ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Автор теории биохимической эволюции. Гипотеза биохимической эволюции

Долгое время ученые со всех уголков мира вели ожесточенные дискуссии и споры по поводу того, как же все-таки возникла жизнь на земле. Кто-то говорил о креационизме, кто-то о панспермии, кто-то придерживался теории самозарождения или гипотезы стационарного состояния, однако лишь в 1924 году советский биохимик А.И. Опалов предложил знаменитую биохимическую теорию. Теория «Возникновения жизни. 1936» устроила большую часть ученых и сейчас она является официально признанной.

Формулировка теории биохимической эволюции

По данным теории биохимической эволюции, формирование жизни на Земле протекало в 3 этапа , и развитию усложненных форм живых организмов предшествовал очень долгий исторический процесс по взаимодействию и построению из органических молекул сложных соединений и образование уже из них различных форм жизни.

Три этапа формирования жизни на Земле:

  1. Первым этапом был абиогенный синтез органических веществ . Это значит, что органические вещества образовались под воздействием внешней среды, наиболее важным фактором, при этом является ультрафиолетовое излучение, и из различных неорганических соединений.
  2. Вторым этапом было формирование биополимеров их органических соединений.
  3. И, последнее, формирование мембранных структур и самовоспроизведение.

Плюсы биохимической теории

  • Одним из главных достоинств теории Опарина-Холдейна является ее последовательность , в ней нет моментов, когда произошло «что-то» и возникла жизнь:
    • Как всем известно, атмосфера первоначально состояла из легких газов, таких как гелий и водород, а со временем остывания земной коры, состав атмосферы поменялся. Газы стали более тяжелыми: водяной пар, аммиак, метан и углекислый газ. Когда земная кора остыла ниже 100 ºС, водяной пар сконденсировался и образовал мировой океан. По теории Опарина, именно в этот момент, в земных океанах, еще полных простых химических соединений, под влиянием вулканического тепла, ультрафиолета и многих других факторов окружающей среды начался процесс образования более сложных органических соединений, а затем биополимеров и прочих компонентов живых организмов.
    • В 1929 году теорию Опарина дополнил английский ученый Холдейн, который предположил, что первенство, то есть главную роль, в образовании жизни принадлежит не белкам, а нуклеиновым кислотам, входящим в состав ДНК всех живых организмов.
    • На самом деле, главную роль в образовании жизни сыграли не белки или нуклеиновые кислоты по отдельности, а их взаимодействие, благодаря чему у живых организмов проявились такие свойства, как самовоспроизведение, сохранение и передача наследственной информации.
  • Эта теория является общепринятой в научном мире и принимается большинством ученых по всему миру:
    • Огромным преимуществом теории биохимической эволюции является ее распространенность и принятость в научных кругах. Это, конечно, неспроста.
    • В лабораторных условиях были проведены исследования, которые доказали, что теория Опарина-Холдейна является, если не правдой, то наиболее приближенной к правде.
  • Огромным достоинством данной теории является ее проверяемость . В лабораторных условия теория была доказана и рассмотрена от первого до последнего этапа.
    • Стенли Миллер-студен Чикагского университета в 1953 году провел определенные исследования, воспроизведя в стеклянной колбе атмосферу первичной Земли и в течение недели, пропускал электрические разряды. К концу эксперимента в колбе были обнаружены а-аминокислоты, органические кислоты, у-оксимасляная кислота и мочевина. При последующем повторении эксперимента были получены отдельные нуклеотиды и короткие полинуклеотидные цепочки из 5-6 звеньев.
  • В последнее время, благодаря быстро развивающейся науке стало возможным проведение многих исследований, которые позволили бы окончательно доказать или опровергнуть данную теорию.

Теория является почти полностью доказанной, она имеет много сторонников, но что же все-таки смущает некоторых ученых?

Минусы теории Опарина-Холдейна

Кроме весомых плюсов теория имеет достаточно сомнительные недостатки, которые не делают теорию официальной, но считают общепринятой:

  • Например, одним из минусов теории биохимической эволюции является отсутствие объяснения возникновения механизма коацерватов полноценной, сформированной клетки.
  • Отсутствие объяснения появления способности к самовоспроизведению тоже смущает ученых и оставляет вопрос открытым.
  • Помимо этого, есть еще более важный аргумент ставящий теорию под сомнение: момент образования белковых структур имеет очень грубую неточность- как аминокислоты без участия ферментов смогли образовать эти самые белковые структуры? Как образовались первые ферменты? На каком этапе это произошло и что стало толчком к этому?

Все неточности не позволяют раз и навсегда ответить на вопрос возникновения жизни и признать данную теорию единственной верной.

Подведем итоги и дадим прогнозы

Теория биохимической эволюции впервые была сформирована не совсем в таком виде, какой мы знаем ее сейчас, она развивалась, дополнялась, проводились исследования молодых умов и теория двигалась вперед, позже даже приобрела двойную фамилию «Теория биохимической эволюции Опарина-Холдейна» . Это дает нам надежду, что со временем теория будет развита дальше, возможно, получит тройную фамилию и ответит на все вопросы, которые сейчас тревожат современных ученых.

Насколько известно, даже сейчас, в научных кругах, ищутся ответы на все неточности и проводятся все новые и новые исследования по обнаружению и получению ферментов, которые при взаимодействии с аминокислотами образовали бы те самые, первые белковые структуры.

Оглядываясь на бесконечно набирающий темп роста научного развития, можно с уверенностью сказать, что в течении 50 ближайших лет будут даны ответы на самые сложные вопросы образования вселенной, жизни, каждой клетки и каждого живого существа.

Теорий возникновения протобиополимеров – основы жизни на Земле несколько. Рассмотрим наиболее важнейшие из них.

Теория Панспермии.

Данной точки зрения придерживались Аррениус, Гельмгольц, Берг, Вернадский, микробиолог Заварзин.

Согласно данной точки зрения жизнь зародилась в космосе и первые живые существа были привнесены на Землю из космоса вместе с космической пылью, метеоритами. Таким образом, жизнь на Земле существует столько, сколько существует сама планета.

Однако встает вопрос, где появилась первая жизнь? По мнению микробиологов, жизнь могла возникнуть в космосе, в пределах Солнечной системы (космо-химическая теория). Эта химическая, а затем биологическая эволюция происходила до образования Земли.

Доказательством является сравнительный анализ вещества космоса и Земли: основными химическими элементами везде являются О, Н, С, N.

Концентрация вещества в космосе очень мала, поэтому, вероятно, первые элементы жизни связаны с космической пылью, которая имеет следующее строение:

Под воздействием ультрафиолетовых лучей, которых в космосе очень много, могли протекать химические и биологические процессы. В метеоритах найдены углеводороды: пурины, пиримидины, аминокислоты. Впервые органические вещества в метеоритах выделены Берцелиусом. Жизнь на поверхность Земли могли доставлять и кометы. Химический состав комет не отрицает это. Органические вещества в «замороженном» состоянии в метеоритах и кометах могли оставаться неограниченно долгое время и, попав на Землю, при благоприятных условиях могли продолжить развитие.

Аргументы против данной теории:

· длительное пребывание в холоде должно быть губительно, но эксперименты подтверждают, что зародыши простейших микроорганизмов в течение 6 мес. переживают температуру –200оС;

· ультрафиолетовые лучи губительны для в сего живого, но в отсутствии кислорода сложные органические соединения могут существовать не разрушаясь при жестком ультрафиолетовом излучении;

· прохождение метеоритов через атмосферу вызывает значительное повышение температуры, метеориты оплавляются, но есть данные, что микроорганизмы могут переносить высокие температуры и они вполне могли сохраниться внутри метеоритов.

Таким образом, нет фактов, доказывающих полную несостоятельность этой теории.

Термическая теория .

Реакции конденсации, которые привели бы к образованию полимеров из низкомолекулярных предшественников, могут осуществляться путем нагревания. Наиболее хорошо изучен синтез полипептидов. Идея термического синтеза полипептидов принадлежит американскому ученому С. Фоксу, который длительно изучал возможности образования полипептидов в условиях, существовавших на первобытной Земле.

Если смесь аминокислот нагреть до 180-2000 С при нормальных атмосферных условиях или в инертной среде, то образуются продукты расщепления, небольшие олигомеры, в которых мономеры соединены пептидными связями, а также малые количества полипептидов. Полипептиды, полученные термическим путем из аминокислот, – протеиноиды – проявляют многие специфические свойства биополимеров протеинового типа. Однако, более сложные структуры получить не удалось. Не выдвинуты обоснованные теоретические пути данного процесса.

Низкотемпературная теория.

Холодная плазма широко распространена в природе. Некоторые ученые считают что 99% Вселенной находятся в состоянии холодной плазмы. На современной Земле она представлена в виде молний, северных сияний, ионосферы. На абиотической Земле этот вид энергии был способен превращать молекулы в свободные радикалы, активные в химическом отношении. В результате экспериментов с холодной плазмой авторами теории были получены отдельные мономеры, полимеры пептидного типа и липиды.

Теория адсорбции .

Основным контраргументом в спорах об абиогенном возникновении полимерных структур является концентрационный барьер и недостаток энергии для конденсации мономеров в разбавленных растворах. Действительно, по некоторым оценкам концентрация органических молекул в «первичном бульоне» составляла около 1%, что не могло обеспечить протекания реакций полимеризации или поликонденсации в быстрые сроки, как это произошло на Земле по оценкам некоторых ученых. Одно из решений этого вопроса, связанное с преодолеванием концентрационного барьера, было предложено Дж. Д. Берналом , считавшим, что концентрирование разбавленных растворов происходит путем «адсорбции в пресноводных или морских отложениях очень тонких глин».

В результате взаимодействия веществ в процессе адсорбции некоторые связи ослабляются и рвутся, другие возникают, что приводит к разрушению одних и образованию других веществ.

Коацерватная теория .

В 1924г. Выходит в свет книга А.И. Опарина «Происхождение жизни», в которой он выдвигает гипотезу, что происхождение жизни на земле есть результат длительного эволюционного процесса на самой Земле. Сейчас зарождение жизни не возможно, т.к. все экологические ниши заняты и есть кислород – сильный окислитель.

В 1929г. Выходит статья Дж. Холдейна, где он независимо от Опарина приходит к таким же результатам. Но приоритет открытия Опарина однозначен.

Опарин считает, что жизнь на Земле могла возникнуть абиогенным путем. Первые живые организмы были гетеротрофами. Это могло произойти при наличии определенных химических веществ, источников энергии, отсутствии газообразного кислорода и при наличии безгранично длительного времени.

Вероятность самозарождения жизни по Опарину 1/1000 случаев в год, но времени было достаточно от возникновения Земли до появления первых прокариотов (1 млрд лет).

Опарин выделил 4 этапа возникновения жизни на Земле.

1 этап. Образование органических веществ.

Вначале масса Земли была раскалена, постепенно она остывала. В это время углерод соединялся с металлами с образованием карбидов:

С + Ме (Ni, Fe) =карбиды (обнаружены в метеоритах).

В первичной атмосфере Земли были C, H, N.

O2 + 2H2 = 2 H2O

Спектральные исследования показали, что эти вещества присутствуют на солнце и других звездах. Свободный кислород отсутствовал. По мере остывания пары воды могли конденсироваться с образованием первичных водоемов.

Источниками энергии для первичной химической эволюции могли служить:

· распад К40;

· ультрафиолетовое излучение;

· вулканизм;

· удары метеоритов;

· молнии.

В водной среде под воздействием этих видов энергии могли появиться спирты, альдегиды, кислоты.

Гипотеза Опарина вызвала много споров и научных исследований.

В 1953г. Миллер сконструировал специальную установку и провел следующие эксперименты. Через смесь газов CH4, NH3, H2O и H2 он пропускал электрический ток. К концу недели были получены аминокислоты аланин и глутамин.

Оро провел подобный эксперимент, используя в качестве энергии ультрафиолетовое излучение при высокой температуре и получил урацил, рибозу и дезоксирибозу.

Теорию Опарина подтверждают и палеонтологические данные. Первые органические молекулы найдены в слоях, соответствующих возрасту 3,8 млрд лет назад.

2 этап. Полимеризация мономеров.

Доказать полимеризацию в естественных условиях трудно, т.к. полимеры легко разрушаются. Т.е. реакции полимеризации и поликонденсации могли идти только при мягких условиях реакции при наличии катализаторов. Ими могли быть цианиды.

Данные реакции по предложению Дж. Д. Бернала могли осуществляться на границе земля – вода, на скоплениях глин, которые являются прекрасными адсорбентами. Многие виды глин эффективно адсорбируют сахара, азотистые основания, кислоты. При высокой концентрации потенциальных мономеров при наличии внешней энергии могли протекать процессы полимеризации.

3 этап. Появление коацерватов.

Молекулы первых органических соединений, в т.ч. и белков, находились в растворах. Они образовывали коллоидный раствор. При смешивании различных коллоидных растворов возникали фазово-обособленные органические системы – капли белков, отличающиеся друг от друга – коацерватные капли, имеющие некую структурную оболочку, образованную определенным образом ориентированными молекулами. Эта оболочка отделяет каплю от внешней среды, превращая ее в дискретную единицу, содержащую набор химических веществ, отличный от внешней среды. Через эту оболочку возможен обмен веществ между коацерватом и внешней средой по типу открытых систем. Внутри коацерватов под действием катализаторов могла происходить самосборка полимерных молекул в многомолекулярные фазово-обособленные образования – видимые под оптическим микроскопом капли. В них сосредотачивается большинство полимерных молекул, тогда как окружающая среда почти их лишена. Коацерваты могут объединяться, образуя более сложные структуры, поглощать меньшие, делиться на дочерние образования. Таким образом, возникает простейший метаболизм. Вещество входит в каплю, полимеризуется, обуславливая рост системы, а при его распаде продукты этого распада выходят во внешнюю среду, где их раньше не было.

Важно то, что в зависимость от совершенства внутренней организации капель одни из них могут расти быстро, тогда как другие, находясь в той же среде, замедлены в своем росте или подвергаются распаду. Таким образом, на модели коацерватных капель А.И Опарину и его сотрудникам удалось экспериментально показать предбиологический отбор, т.е. зачатки естественного отбора, который в дальнейшем явился движущей силой всего эволюционного процесса.

Исследования Опарина подтверждены другими учеными. Это «пузырьки» Гольдейкера, «микросферы» Фокса, «джейвану» Бахадура. «пробионты» Эгами и многие другие.

4 этап. Возникновение матричного синтеза.

Грань, отделяющая преджизнь от жизни – возникновение матричного синтеза. До этого момента существовали индивидуумы, с появлением матричного синтеза можно говорить о популяциях.

Синтез белков претерпевал эволюционные изменения.

Изначально сборка белков шла на РНК, находящихся в цитоплазме клеток. Это самый простой способ, но при нем не гарантировалось равномерное деление информации между дочерними клетками, т.е. часть признаков могла исчезнуть из популяции.

Более прогрессивный способ возник с появлением ДНК. ДНК были более устойчивыми молекулами, поскольку имели двуцепочечное строение. На первом этапе РНК и ДНК конкурировали и возможно эволюция пошла по дивергентному пути. ДНК стала специализироваться на самовоспроизведении, РНК – синтезе белков. ДНК обосновалась в ядре, РНК – в цитоплазме. Образовались 2 системы синтеза:

– синтез полипептидов – относительно не точный;

– синтез белков – очень точный.

Постепенно возникла система генетического кода, когда триплет нуклеотидов кодировал аминокислоту. С появлением примитивного генетического аппарата обладавшие им протоклетки смогли передавать всем своим потомкам способность синтезировать специфические полипептиды. Образующиеся из них линии давали семейства родственных протоклеток с наследуемыми свойствами, которые подвергались естественному отбору.

Первые живые организмы были гетеротрофными и использовали готовые органические вещества первичного бульона. Автотрофы скорее всего произошли от гетеротрофов на следующем этапе эволюции. Причиной явилось уменьшение количества готовых органических веществ в первичном бульоне, т.к. увеличилось количество протобионтов, а позднее первых живых организмов. Это обострило конкуренцию преимущество стали иметь живые организмы, использующие альтернативные источники энергии. Таким неисчерпаемым источником энергии стал солнечный свет. Сначала это была ультрафиолетовая часть спектра, позднее, с появлением кислорода, в атмосфере начал формироваться озоновый экран – препятствие для ультрафиолетового излучения и преимущество получили организмы, имеющие катализаторы, позволяющие использовать видимую часть спектра для осуществления окислительно-восстановительных реакций. Возник фотосинтез. Это привело к еще большему увеличению содержания кислорода в атмосфере и возникновению процесса дыхания. Накопление кислорода в атмосфере также привело к окончанию абиогенного синтеза.

Теория биохимической эволюции представила зарождение жизни на Земле как процесс последовательного усложнения химических веществ: от неорганических соединений ‒ к органическим, от органических ‒ к биологическим. Ее автором явился советский ученый академик Александр Иванович Опарин (1894 – 1980). В 1924 году он опубликовал книгу «Происхождение жизни», в которой изложил новую гипотезу происхождения жизни на Земле. Книга, выпущенная в стране, где господствовали материализм и атеизм, могла описывать происхождение жизни только как процесс, происходивший под влиянием исключительно естественных причин, т.е. без участия Божественных Сил. Хотя и не следует сомневаться в искренности замечательного ученого. По мнению Опарина, происходило постепенное усложнение химических веществ – химическая эволюция. Она привела к появлению таких сложных веществ, которые явились носителями жизни. Иными словами, химическая эволюция постепенно перешла в биологическую. Такой процесс называется в науке абиогенным, т.е. происходящим без участия живых организмов. Опарин предположил, что принцип Реди справедлив лишь для современной эпохи существования Земли. Таким образом, согласно его гипотезе, зарождение жизни на Земле ‒ процесс эволюции живой материи из неживой.

Биогенез ‒ процесс возникновения и эволюции живых систем.

Опарин считал, что в древние времена природные условия Земли существенно отличались от современных. Первичная атмосфера не содержала свободного кислорода. В современной атмосфере он содержится в количестве 21% по объему. В такой атмосфере могли содержаться аммиак (NH 3), двуокись углерода (CO 2), метан (CH 4) и водяной пар. Этой первичной атмосферы уже нет. На ее месте образовалась вторичная атмосфера ‒ продукт развития жизни на Земле.

Отсутствие кислорода в первичной атмосфере привело к важнейшему следствию. Она не содержала озонового слоя. В современной атмосфере он находится на высоте около 20 км над поверхностью Земли и поглощает 99% ультрафиолетового излучения Солнца, которое губительно действует на живые ткани. Поэтому первые организмы должны были защищаться от него под слоем воды.

Первый этап возникновения жизни ‒ образование органических веществ из неорганических.

Разделение мира на живой и неживой принадлежит Аристотелю. На раннем этапе развития химии, храня верность аристотелевской традиции, химики разделили все вещества на неорганические и органические ‒ принадлежащие царству минералов и царству растений и животных. С точки зрения химического состава, к органическим веществам относятся, за редчайшим исключением, соединения углерода.

Второй этап возникновения жизни – появление из отдельных органических молекул белков и нуклеиновых кислот.

Соединения углерода образовали «первичный бульон», из которого формировались биополимеры ‒ аминокислоты и нуклеотиды, составляющие основу белков и нуклеиновых кислот. Но в ходе реакций, которые вели к образованию биополимеров, должны были соединяться вещества сравнительно высокой концентрации. Органические вещества могли образовывать на поверхности океана тонкую пленку, и под действием волн и ветра она толстыми слоями собиралась у берега. Причем, этим процессам способствовали высокая температура атмосферы, грозовые разряды, мощное ультрафиолетовое излучение. Важно и то, что сложные органические соединения являются более устойчивыми к разрушающему действию ультрафиолетового излучения, чем простые соединения.

Согласно гипотезе Опарина, предками современных клеток были органические образования, способные на обмен веществ с окружающей средой. Процесс накопления в среде органических молекул в небольшие комплексы называется коацервацией, а сами такие комплексы ‒ коацерватами. Они состояли из сотен тысяч и миллионов мономеров. Такие комплексы легко получить искусственно, смешивая растворы разных белков. Они способны погло­щать из окружающей среды разные вещества и увеличиваться в раз­мере. В коацерватах могут происходить процессы распада и выделения продуктов распада. Однако они еще не являлись живыми системами, поскольку не были способны к самовоспроизведению и саморегуляции синтеза ор­ганических веществ. Но предпосылки возникновения живого в них уже были.

Живые существа в виде клеток не могли возникнуть до того, как появились клеточные мембраны и катализаторы ‒ вещества, ускоряющие биохимические реакции. Вокруг коацерватов, богатых органическими соединениями, стали возникать слои липидов – жироподобных веществ, которые отделяли коацерваты от окружающей водной среды. В процессе биохимической эволюции эти слои липидов трансформировались в наружную клеточную мембрану. В «первичном бульоне» накапливались также различные катализаторы.

Согласно теории биохимической эволюции, коацерваты представляли собой предбиологические системы.

Третий этап возникновения жизни – начало действия естественного отбора.

Коацерваты могли поглощать из окружающей среды другие вещества. Если вещество было вредным, коацерват распадался. Если вещество усваивалось, коацерват увеличивался в размерах, изменял структуру. Иными словами, происходил отбор наиболее устойчивых коацерватов. Он шел многие миллионы лет. Сохранилась лишь малая часть коацерватов. Однако сохранившиеся обладали способностью к первичному обмену веществ. Достигнув определенных размеров, материнская капля могла распадаться на дочерние, которые сохраняли материнскую структуру. Поэтому можно говорить, что коацерваты постепенно приобретали свойство самовоспроизведения. В сущности, коацерваты, в конце концов, превратились в простейшие живые организмы.



Внутри коацерватов свойства молекул разделялись. Белки регулировали ход химических реакций, которые приводили к появлению новых органических веществ. Нуклеотидные цепи стали удваиваться. Эволюция этих свойств привела к появлению наследственного генетического кода, несущего информацию о строении белковых молекул. Так появились примитивные прокариотические клетки, не имеющие клеточного ядра.

Прокариотические клетки – клетки, не имеющие клеточного ядра, генетический материал которых находится в цитоплазме.

Таким образом, эволюция коацерватов привела к появлению первичных клеток. Это произошло более 4 млрд. лет назад.

Прокариоты ‒ организмы, состоящие из прокариотических клеток, ‒ живут и сегодня. Это бактерии и сине-зеленые водоросли.

Прокариоты существовали в атмосфере, не имеющей кислорода. Поэтому их метаболизм ‒ обмен веществ ‒ был анаэробным.

Анаэробный метаболизм – обмен веществ и энергии, протекающий в отсутствие атмосферного кислорода.

Продолжительность существования первичной бескислородной атмосферы в геологических масштабах была невелика. Первичные клетки быстро размножались и довольно скоро исчерпали запасы питательных органических веществ. Поэтому им оставалось либо погибнуть от голода, либо перейти к иному способу питания. И они нашли его. У некоторых клеток появилась способность к фотосинтезу. Иными словами, для синтеза органических веществ из неорганических они научились использовать солнечную энергию.

Фотосинтез – процесс преобразования солнечной энергии в энергию химических связей органических веществ.

Первоначально фотосинтез происходил без образования молекулярного кислорода. Около 4 млрд. лет назад организмы стали выделять кислород, иными словами, появился аэробный метаболизм.

Аэробный метаболизм – дыхание, при котором расщепление органических веществ происходит при участии кислорода.

В подобных процессах выделяется приблизительно в десять раз больше энергии, чем в реакциях без участия кислорода. Атмосфера стала обогащаться свободным кислородом. Около 400 млн. лет назад, когда количество свободного кислорода в атмосфере достигло 10% по объему, появился озоновый слой. Он обладает свойством поглощать ультрафиолетовое излучение Солнца, губительное для живых организмов. В настоящее время озоновый слой пропускает лишь ничтожную его часть и, тем самым, оберегает все живое на Земле.

Можно предположить, что в раннюю эпоху существования жизни происходила борьба между первичными и вторичными организмами. Первичные организмы – анаэробы, вторичные – аэробы. Видимо, главным оружием аэробов был свободный кислород, который выделялся как продукт их жизнедеятельности и был смертелен для анаэробов. Он и решил исход этой борьбы. Ныне повсеместно господствуют формы жизни, которые при обмене веществ используют кислород. Однако некоторые виды анаэробных организмов живут и поныне. Это, прежде всего, сине-зеленые водоросли.

Благодаря кислородному способу питания организмы нового типа быстро расселялись по нашей планете. Жизнь стала осваивать глубины океана. С появлением озонового слоя она вышла из моря и стала завоевывать сушу.

С распространением аэробов возросла интенсивность реакций фотосинтеза и, следовательно, накопление кислорода в атмосфере. Понадобилось около 100 млн. лет, чтобы количество кислорода в атмосфере достигло современного значения ‒ 21% по объему. С тех пор состав атмосферы практически не изменился до настоящего времени.

Постепенно клетки усложнялись. Около 2 млрд. лет назад появились эукариотические клетки.

Эукариотические клетки – клетки, имеющие ядро и многие внутриклеточные структуры.

Эукариоты ‒ организмы, состоящие из эукариотических клеток, ‒ появились около 2,6 млрд. лет назад.

Наши знания о первых организмах невелики, поскольку они исчезли и не оставили после себя никаких следов.

Приблизительно 1,3 млрд. лет назад стали появляться колонии одноклеточных организмов. В некоторых из них разные клетки выполняли различные функции. Одни клетки поглощали добычу, другие обеспечивали размножение. При этом каждая клетка была отдельным живым организмом. Постепенно некоторые колонии одноклеточных стали превращаться в целостные многоклеточные организмы.

У гипотезы Опарина есть немало сторонников, которые успешно ее развивают. Важнейшей является проблема, каковы источники органических соединений на Земле. Одним из них являются метеориты и космическая пыль. В 1969 году вблизи деревни Мëрчисон в Австралии упал метеорит весом 108 кг. Он относится к углистым хондритам. Как следует из названия, такие метеориты содержат много сложных органических соединений. В нем были найдены следы более 50 аминокислот, причем, восемь из них входят в состав современных белков. Также были обнаружены аденин, урацил и гуанин ‒ азотистые основания нуклеиновых кислот. Из 50 аминокислот значительное большинство не входит в состав живых организмов, а некоторые соединения встречаются в виде двух оптических изомеров – левого и правого. Вспомним, что важнейшим свойством живых организмов является асимметрия сложных молекул, иными словами, существование лишь одного из двух изомеров. Таким образом, обнаружение в Мëрчисонском метеорите симметричных изомеров, а также аминокислот, не входящих в состав живых организмов, доказывает, что все обнаруженные соединения не являются загрязнениями, попавшими на метеорит в земных условиях.

Другим источником органических соединений на Земле являются вулканы и гидротермальные жерла срединно-океанических хребтов. При извержении вулканов вместе с магмой выбрасывается огромное количество газов: сероводород, метан, аммиак, окислы азота и углерода.

Третий источник органических соединений на Земле ‒ атмосфера.

В настоящее время специалисты считают, что в процессе возникновения жизни на Земле все эти источники могли совместно поставлять органические вещества.

Под действием солнечных и космических лучей, которые проникали сквозь разреженную атмосферу, происходила ее ионизация – нейтральные атомы превращались в заряженные, и атмосфера становилась холодной плазмой. Таким образом, древняя атмосфера Земли была богата электричеством, в ней вспыхивали частые разряды.

У теории биохимической эволюции имеются некоторые эмпирические подтверждения. Одно из них – останки организмов, найденные в древнейших горных породах. Из них самые древние ‒ известняки, обнаруженные в Западной Австралии. Это останки нитчатых и округлых микроорганизмов, их насчитывается около десятка различных видов. Их образовали сине-зеленые водоросли и бактерии. Их возраст специалисты оценили в 3,2 ‒ 3,5 млрд. лет. В Северной Америке были обнаружены останки водорослей, возраст которых составляет около 1,1 млрд. лет.

Другим обоснованием теории биохимической эволюции явились эксперименты, которые поставили в 50 – 60-е годы XX века химики из США, СССР и Германии.

В 1953 году американский ученый Стэнли Миллер (1930 – 2007) провел эксперимент, который был призван моделировать процессы, происходящие в первичной атмосфере Земли. Главную часть установки составляла колба с электродами. В ней находились вода и газы, которые, предположительно, входили в состав древней земной атмосферы ‒ водород, метан, аммиак и др. Существенно, что не было свободного кислорода. Колба нагревалась, а между электродами протекали электрические разряды. Через несколько дней в ней образовались аминокислоты, азотистые основания и другие сложные биологические вещества.

Жизнь могла появиться только тогда, когда начал действовать механизм наследственности. Поэтому в настоящее время центральная проблема в теории биохимической эволюции – как появился этот механизм. Началом жизни на Земле нельзя считать даже появление древней ДНК вместо коацерватной капли, поскольку ДНК способна действовать только в присутствии белков-ферментов.

Проблему можно пояснить следующим рассуждением: для работы молекул ДНК и РНК необходимы ферменты, т.е. белки, а для синтеза белков ‒ нуклеиновые кислоты. Известная ситуация: змея кусает себя за хвост. Были предположения, что нуклеиновые кислоты и белки-ферменты появились одновременно, объединились в единую систему, и после этого началась их коэволюция ‒ одновременная и взаимосвязанная эволюция. Но это предположение не получило признания ученых. Объясняется это тем, что белковые и нуклеиновые молекулы по структуре и функциям глубоко различны. Поэтому они не могли появиться одновременно, в результате одного скачка в процессе химической эволюции.

В XX веке ученые спорили о том, что было первичным ‒ белки-ферменты или нуклеиновые кислоты, а также о том, как и когда произошло их объединение в единую систему, которую и можно считать живым организмом. В зависимости от решения вопроса, белки или нуклеиновые кислоты являлись первичными образованиями, методологические подходы к биохимической эволюции можно разделить на две группы ‒ голобиоза и генобиоза.

Теория Опарина относится к этой группе. Появление нуклеиновых кислот она считает итогом эволюции.

Он проявился, в частности, в теории американского генетика Джона Холдейна (1892 ‒ 1964), предложенной в 1929 году. Согласно Холдейну, первичным явился макромолекулярный комплекс, подобный гену и способный к самовоспроизведению. Он был назван «голым геном».

Вплоть до 80-х годов XX века гипотезы голобиоза и генобиоза резко противостояли друг другу. В конце концов, ученые предпочли концепцию генобиоза. Но оставались нерешенными принципиальной важности проблемы. Какая из молекул появилась первой ‒ ДНК или РНК? Если белки-ферменты появились позже молекулы нуклеиновой кислоты, то как без них эта молекула могла действовать?

В 80-х годах XX века у молекулы РНК были обнаружены уникальные свойства. Оказалось, что она способна передавать генетическую информацию так же, как и молекула ДНК. Было открыто, что не существует организмов, не обладающих РНК, однако есть множество вирусов, не содержащих ДНК. Выяснилось, что возможен перенос информации от РНК к ДНК. И, самое главное, была обнаружена способность молекулы РНК к саморепродукции без участия белков-ферментов. Это открытие позволило решить проблему первичности. Первичными являлись нуклеиновые кислоты, а именно ‒ РНК. Замкнутый круг был разорван.

Однако концепции, которые описывают происхождение жизни на Земле как результат случайных процессов, подвергают критике многие выдающиеся ученые. Английскому астрофизику Фреду Хойлу принадлежит известная шутка о том, что любая подобная концепция «столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке Боинга-747».

Важнейшие положения темы № 9 «Проблема происхождения жизни

в научной картине мира»

Современная биология, определяя жизнь, перечисляет важнейшие свойства живых организмов, признавая, что только совокупность этих свойств и может отличить живое от неживого. Между живой и неживой природой нет резкой грани. Существуют переходные формы, которые, в зависимости от конкретных условий, считаются или живыми, или неживыми объектами. Например, вирусы.

К основным теориям происхождения жизни относятся: креационизм, теория самопроизвольного зарождения жизни, теория панспермии, теория биохимической эволюции.

Согласно теории самопроизвольного зарождения жизни, в некоторых телах могут находиться «активные зерна», которые дают начало живым существам, если оказываются в благоприятной среде.

Франческо Реди поставил опыт с кусками мяса, который поколебал, но еще не мог опровергнуть теорию самопроизвольного зарождения жизни. Реди доказал, что самозарождение червей из гниющего мяса без мух невозможно. Благодаря этому опыту Франческо Реди сумел сформулировать вывод, который стал основополагающим принципом современной биологии.

Принцип Реди. Живые организмы происходят только от других живых организмов и не способны самозарождаться.

Луи Пастер в решающем опыте опроверг теорию самопроизвольного жизни.

Согласно теории панспермии, жизнь занесена на Землю из Космоса. Однако все варианты концепции панспермии, в конечном счете, не решают проблемы происхождения жизни. Они оставляют открытым вопрос: где и как жизнь возникла в Космосе?

Теория биохимической эволюции, разработанная Александром Ивановичем Опариным, представила зарождение жизни на Земле как процесс последовательного усложнения химических веществ: от неорганических соединений ‒ к органическим, от органических ‒ к биологическим. Стэнли Миллер провел опыт, который призван был экспериментально обосновать теорию биохимической эволюции. Он поставил цель смоделировать в колбе первичную атмосферу Земли. Через несколько дней в колбе образовались аминокислоты, азотистые основания и другие сложные биологические вещества.

В XX веке ученые спорили о том, что было первичным ‒ белки-ферменты или нуклеиновые кислоты. В зависимости от решения вопроса о первичности, методологические подходы к биохимической эволюции разделились на две группы ‒ голобиоза и генобиоза.

Голобиоз ‒ методологический подход, который утверждает первичность структур, способных к обмену веществ при участии белков-ферментов.

Теория Опарина относится к этой группе.

Генобиоз ‒ методологический подход, который утверждает первичность структур со свойствами первичного генетического кода.

У молекулы РНК были обнаружены уникальные свойства. Оказалось, что она способна передавать генетическую информацию. Была обнаружена способность молекулы РНК к саморепродукции без участия белков-ферментов. Это открытие позволило решить проблему первичности. Первичными являлись нуклеиновые кислоты, а именно ‒ РНК.

Вопросы для самоконтроля

1. Как меняются свойства вирусов, когда они попадают в клетку?

2. Сформулируйте суть теории самопроизвольного зарождения жизни.

3. Опишите опыт Франческо Реди.

4. Сформулируйте принцип Реди.

5. Какое великое биологическое открытие сделал Антони ван Левенгук?

6. Опишите опыт Луи Пастера.

7. Опишите один из вариантов гипотезы панспермии.

8. Сформулируйте одно из возражений против теории панспермии.

9. Какое открытие сделал Йёнс Якоб Берцелиус, исследуя метеорит Алаис?

10. Что такое изомерия?

11. Что такое хиральность?

12. В чем заключается суть теории биохимической эволюции?

13. Что такое биогенез?

14. Какие клетки называются прокариотическими?

15. Какие клетки называются эукариотическими?

16. Перечислите источники органических соединений на Земле.

17. Опишите опыт Стэнли Миллера.

18. Что такое голобиоз?

19. Что такое генобиоз?

20. Какие вещества признаны первичными – белки или нуклеиновые кислоты?

Как уже упоминалось, в состав первичной атмосферы Земли входили пары воды и несколько газов: CO 2 , CO, H 2 S, NH 3 , CH 4 . При этом кислород практически отсутствовал, и атмосфера имела восстановительный характер.

Возникновение жизни на Земле и ее биосферы – одна из основных проблем современного естествознания. Согласно гипотезе биохимической эволюции А.И.Опарина зарождение жизни на Земле – это длительный процесс становления живой материи из неживой под воздействием физико-химических факторов.

В то же время в вопросе о происхождении первых «протоклеток», моменте перехода от «нежизни» к жизни еще очень много неясного.

Гиперциклы и зарождение жизни. Лучше понять процесс происхождения и эволюции жизни, можно, обратясь к расмотренной ранее теории химической эволюции Руденко и гипотезы немецкого физико-химика М. Эйгена. Согласно последней, процесс возникновения живых клеток тесно связан с взаимодействием нуклеотидов (нуклеотиды – элементы нуклеиновых кислот, в состав которых входят азотистые основания – цитозин, гуанин, тимин, аденин), являющихся материальными носителями информации , и протеинов (полипептидов), служащих катализаторами химических реакций. В процессе взаимодействия нуклеотиды под влиянием протеинов воспроизводят самих себя и передают информацию следующему за ними протеину, так что возникает замкнутая автокаталитическая цепь , которую М. Эйген назвал гиперциклом . В ходе дальнейшей эволюции из них возникают первые живые клетки, сначала безъядерные (прокариоты), а затем с ядрами – эукариоты.

Здесь, как видим, прослеживается логическая связь между теорией эволюции катализаторов и представлениями о замкнутой автокаталитической цепи. В ходе эволюции принцип автокатализа дополняется принципом самовоспроизведения целого циклически организованного процесса в гиперциклах, предложенного М.Эйгеном. Воспроизведение компонентов гиперциклов, так же как и их объединение в новые гиперциклы, сопровождается усилением метаболизма, связанного с синтезированием высокоэнергетических молекул и выведением как «отбросов» бедных энергией молекул. Здесь интересно отметить особенности вирусов как промежуточной формы между жизнью и нежизнью: они лишены способности к метаболизму и, внедряясь в клетки, начинают пользоваться их метаболической системой . Итак, по Эйгену происходит конкуренция гиперциклов, или циклов химических реакций, которые приводят к образованию белковых молекул (рис.).

Рис. Гиперцикл и возникновение гипотетической клетки

Циклы, которые работают быстрее и эффективнее, чем остальные, «побеждают» в конкурентной борьбе. Фактически, Эйген выдвинул концепцию образования упорядоченных макромолекул из неупорядоченного вещества на основе матричной репродукции естественного отбора. Он начинает с того, что дарвиновский принцип естественного отбора – это единственный понятный нам способ создания новой информации как физической величины, отражающей меру упорядоченности системы (в противоположность энтропии – «беспорядку»). Другими словами, если имеется система самовоспроизводящихся единиц, которые строятся из материала, поступающего в ограниченном количестве из единого источника, то в ней с неизбежностью возникает конкуренция и, как ее следствие, отбор . Эволюционное поведение, управляемое естественным отбором, основано на самовоспроизведении с "информационным шумом" (в случае эволюции биологических видов роль "шума" выполняют мутации). Наличия этих двух физических свойств достаточно, чтобы стало принципиально возможным возникновение системы с прогрессирующей степенью сложности.

Простейшим примером гиперцикла может служить размножение РНК-содержащего вируса в бактериальной клетке. Этот гиперцикл конкурирует с любой самовоспроизводящейся единицей, не являющейся его членом; он не может стабильно сосуществовать и с другими гиперциклами – если только не объединен с ними в автокаталитический цикл следующего, более высокого, порядка. Состоя из самостоятельных самовоспроизводящихся единиц (что гарантирует сохранение фиксированного количества информации, передающейся от "предков" к "потомкам"), он обладает и интегрирующими свойствами. Таким образом, гиперцикл объединяет эти единицы в систему, способную к согласованной эволюции, где преимущества одного индивида могут использоваться всеми ее членами, причем система как целое продолжает интенсивно конкурировать с любой единицей иного состава.

В процессе возникновения жизни на Земле различают несколько основных этапов. Их последовательность в процессе эволюции: абиогенный синтез низкомолекулярных органических веществ, образование биополимеров, формирование коацерватов, возникновение фотосинтеза.


Рис. 4. Схема абиогенеза

Интересно сопоставить действительные представления о биохимической эволюции с тем, что пытаются обычно представить креационисты, критикующие эту теорию (рис.).

Согласно современным гипотезам, вещества, возникшие в первичной атмосфере, в основном вымывались в океанах, размеры которых увеличивались по мере остывания Земли. Были проведены эксперименты с газами, предположительно входившими в состав этой атмосферы, в условиях, считающимися близкими к господствовавшим в то время. В этих экспериментах получены сложные органические молекулы, сходные с основными компонентами биологических структур. Земные океаны превращались во все более концентрированный раствор таких веществ.

Некоторые органические молекулы имеют тенденцию собираться вместе. В первичном океане эти скопления, вероятно, приобретали форму капель, похожих на образуемые маслом в воде. Такие капли, по-видимому, и были предшественниками примитивных клеток – первых форм живого.

Согласно современным теориям, эти органические молекулы служили также источником энергии для первых организмов. Примитивные клетки или клеткоподобные структуры могли получать ее, используя имеющиеся в изобилии химические соединения. По мере развития и усложнения организмы становились все более самостоятельными, приобретая такие способности: расти, размножаться и предавать свои признаки следующим поколениям.

Таким образом, первые организмы , возникшие на Земле и долго существовавшие в водах первичного океана – это прокариоты , т.е. безъядерные организмы. Прокариот называют также «бактериями». Кроме того, эти организмы не нуждались в кислороде для своей жизнедеятельности, т.е. были анаэробами . Они удовлетворяли свои энергетические нужды, потребляя органические соединения из окружающей среды, т.е. были гетеротрофами (от греческих слов heteros – другой и trophos – питающийся). К этой группе сейчас относятся все животные и грибы, а также многие одноклеточные, например большинство бактерий.

До того как атмосфера стала аэробной, т.е. кислородной, существовали только лишенные ядерных оболочек прокариотические клетки, генетический материал которых не организован в сложные хромосомы.

По мере увеличения численности примитивных гетеротрофов запас сложных молекул, от которых зависело их существование, накапливавшийся в течение миллионов лет, начал истощаться. Органики за пределами клеток становилось все меньше, и между ними началась конкуренция. Под ее давлением клетки, которые могли эффективно использовать ставшие ограниченными источниками энергии, получили в сравнении с другими больше шансов выжить. С течением времени в результате длительного медленного процесса вымирания (элиминации) наименее приспособленных возникли организмы, способные создавать собственно богатые энергией молекулы из простых неорганических веществ. Они называются автотрофами , что означает по-гречески «самостоятельно питающиеся». Без появления этих первых автотрофов жизнь на Земле прекратилась бы.

Наиболее преуспевающими оказались автотрофы, у которых появилась система для непосредственного использования солнечной энергии, т.е. фотосинтеза. Первые фотосинтезирующие организмы были намного проще современных растений, но уже значительно сложнее, чем примитивные гетеротрофы. Для поглощения и использования солнечной энергии потребовалась особая, улавливающая световую энергию пигментная система и сопряженная с ней система запасания этой энергии в связях органических молекул.

Доказательства существования фотосинтезирующих организмов были найдены в породах возрастом 3,4 млрд. лет, т.е. на 100 млн. лет более молодых, чем те, в которых обнаружены первые ископаемые свидетельства жизни на Земле. Однако можно быть почти уверенным в том, что и жизнь, и фотосинтез появились значительно раньше. С появлением автотрофов поток энергии в биосфере приобрел современные черты: лучистая энергия улавливается фотосинтезирующими организмами, а от них предается всем остальным живым существам.

По мере увеличения количества автотрофов облик планеты изменялся. Эта биологическая революция связана с одним из наиболее эффективных способов фотосинтеза, используемым почти всеми ныне живущими автотрофами и включающим расщепление молекулы воды с высвобождением кислорода. В результате количество газообразного кислорода в атмосфере увеличивалось, а это имело два важных последствия.

Во-первых, часть кислорода во внешнем слое атмосферы превращалась в озон , который, накопившись в достаточном количестве, начал поглощать ультрафиолетовые лучи падающего на землю солнечного света, губительные для живого. Около 450 млн. лет назад организмы, защищенные озоновым слоем, уже могли выживать у поверхности воды и на суше.

Во-вторых, увеличение количества свободного кислорода дало возможность более эффективно использовать богатые энергией углеродсодержащие молекулы, образованные в ходе фотосинтеза, позволив организмам расщеплять и окислять их в процессе дыхания (окислительное фосфорилирование) . А дыхание дает значительно больше энергии, чем любое анаэробное (бескислородное) разложение.

Окисли́тельное фосфорили́рование – метаболический путь, при котором энергия, образовавшаяся при окислении (обязательно нужно присутствие кислорода) питательных веществ, запасается в митохондриях клеток в виде АТФ.

Все виды организмов, жившие на Земле ранее примерно 1,5 млрд. лет назад, были гетеротрофами или автотрофными бактериями. Согласно палеонтологическим данным, увеличение концентрации свободного кислорода сопровождалось появлением первых эукариотических клеток , имеющих ядерные оболочки, особо устроенные хромосомы и ограниченные мембранами органеллы. Эукариотические организмы, отдельные клетки которых обычно значительно крупнее бактериальных, возникли около 1,5 млрд. лет назад, а многочисленными и разнообразными стали примерно 1 млрд. лет назад. Все живые существа, кроме бактерий, состоят из одной или многих эукариотических клеток. Следует отметить, что первые этапы становления жизни на Земле заняли миллиарды лет (рис.).

Рис. Начальный этап эволюции жизни

Таким образом, концепция самоорганизации позволяет установить связь между живым и неживым в ходе эволюции, так что возникновение жизни представляется отнюдь не чисто случайной и крайне маловероятной комбинацией условий и предпосылок для ее появления. Кроме того, жизнь сама готовит условия для своей дальнейшей эволюции.

Нерегулярные полимеры – полимеры, в которых нет определенной закономерности в последовательности молекул.


Теории возникновения жизни.

Теория биохимической эволюции
До середины XX в. многие ученые полагали, что органические соединения могут возникать только в живом организме. Именно поэтому их назвали органическими соединениями в противоположность веществам неживой природы - минералам, которые получили название неорганических соединений. Считалось, что органические вещества возникают только биогенно, а природа неорганических веществ совершенно иная, поэтому возникновение даже простейших организмов из неорганических веществ совершенно невозможно. Однако после того как из обычных химических элементов было синтезировано первое органическое соединение, представление о двух разных сущностях органических и неорганических веществ оказалось несостоятельным. В результате этого открытия возникли органическая химия и биохимия, изучающие химические процессы в живых организмах.

Однако в индивидуальных экспериментальных подходах из 20 протеиногенных аминокислот всегда составляло только максимум тринадцать, кроме того, существовал избыток веществ, которые не связаны в живой природе в связи с синтезом белка. Кроме того, анализ продуктов реакции выявил избыток моно - и полифункциональных молекул, которые являются значительным смешающим фактором для цепи отдельных аминокислот для белков.

Эксперименты Стэнли Миллера можно было рассматривать как первый шаг в формировании жизненно важных молекул. Однако этот шаг, очевидно, ведет к тупику. Поскольку во всех экспериментальных подходах возникает большое количество других веществ одновременно с желаемыми аминокислотами, которые серьезно затрудняют или даже делают невозможными следующие шаги.

Кроме того, данное научное открытие позволило создать концепцию биохимической эволюции, согласно которой жизнь на Земле возникла в результате физических и химических процессов. В основу этой гипотезы были положены данные о сходстве веществ, входящих в состав растений и животных, о возможности в лабораторных условиях синтезировать органические вещества, составляющие белок.

Некоторые из этих белков, ферментов, которые катализируют реакции, которые гарантируют выживание клетки и обеспечить, чтобы они удваиваются. Эксперименты Миллера не могли дать никаких правдоподобных доказательств для образования исходных материалов обеих макромолекул. Даже если бы упростительно предположить, что в качестве исходного материала для нуклеиновых кислот и нескольких аминокислот в качестве строительных блоков для белков потребуется только две основы, основная проблема останется: что было первым, белки или нуклеиновые кислоты.

Академик А.И. Опарин опубликовал в 1924 г. свой труд «Происхождение жизни», где была изложена принципиально новая гипотеза происхождения жизни. Суть гипотезы сводилась к следующему: зарождение жизни на Земле - длительный эволюционный процесс становления живой материи в недрах неживой. И произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических факторов, и тем самым химическая эволюция постепенно поднялась на качественно новый уровень и перешла в биохимическую эволюцию.

Доказательства того, что были примитивные предшественники репликативной и метаболически активной системы, пока нет. Однако есть свидетельства того, что одна молекула-предшественник может сочетать обе функции, а именно хранение генетической информации и катализ или авторепликацию.

Оказалось, что на более поздних стадиях развития эти задачи полностью переносятся белками. Эти соображения долгое время оставались в сфере спекуляций. Эксперименты Миллера Урсуппена были относительно неспецифичны в поисках органических макромолекул как возможных исходных материалов для белков и нуклеиновых кислот. Некоторые из них будут представлены ниже.

Рассматривая проблему возникновения жизни путем биохимической эволюции, Опарин выделяет три этапа перехода от неживой материи к живой:

Синтез исходных органических соединений из неорганических веществ в условиях первичной атмосферы первобытной Земли;

Формирование в первичных водоемах Земли из накопившихся органических соединений биополимеров, липидов, углеводородов;

В дальнейшем, этот синтетический путь был исследован, и было обнаружено, что это был автокаталитический реакционный цикл, который был вызван небольшими количествами примесей формальдегида и вывел в качестве первого гликолевого продукта реакции. Если бы можно было направить реакцию Бутлерова на синтез рибозы, это может быть идеальным путем к сахарному компоненту нуклеотидов. Однако на этом пути были подготовлены только сахарные смеси, и рибозы всегда обнаруживались только в исчезающе малых количествах.

Однако вскоре стало очевидно, что катионы свинца катализируют синтез альдоптентозов, что приводит к предположению, что рибозы могут образовываться в пребиотических условиях. Химический синтез аденина пуринового основания до сих пор остается загадкой. Основой возможного синтеза пребиотического аденина является цианид водорода или синильная кислота. Джон Оро и его коллеги смогли извлечь небольшое количество аденина из цианида аммония в начале шестидесятых годов. Это побудило ученых искать другие возможные пути аденина.

Самоорганизация сложных органических соединений, возникновение на их основе и эволюционное совершенствование процесса обмена веществ и воспроизводства органических структур, завершающееся образованием простейшей клетки.

Несмотря на всю экспериментальную обоснованность и теоретическую убедительность, концепция Опарина имеет как сильные, так и слабые стороны.

Миякава предположил, что пурины в ранней земной атмосфере были сформированы независимо от цианистого водорода. Кристофер Чиба и Карл Саган еще более смело рассуждают о том, что пурины были произведены в других местах нашей солнечной системы и снесены на землю метеоритами. Роберт Шапиро, один из ведущих исследователей происхождения, критично относится к этим соображениям. Именно потому, что аденин играет важную роль в репликации всех известных живых существ, очевидно, что аденин был компонентом системы репликации в начале жизни.

Но химические свойства аденина говорят против такой роли. Это три веские причины, из-за которых Шапиро отвергает привлекательную возможность того, что аденин мог быть компонентом первой репликативной системы. Он также скептически относится к возможному пребиотическому синтезу пиримидинов. Они не были обнаружены ни в метеоритах, ни в экспериментах с электрическими разрядами. Химический синтез представляет собой такую ​​сложность, что Шапиро также считает, что цитозин как возможный компонент ранней молекулы репликатора очень маловероятен.

Сильной стороной концепции является достаточно точное соответствие ее химической эволюции, согласно которой зарождение жизни есть закономерный результат добиологической эволюции материи. Убедительным аргументом в пользу этой концепции выступает также возможность экспериментальной проверки ее основных положений. Это касается лабораторного воспроизведения не только предполагаемых физико-химических условий первичной Земли, но и коацерватов, имитирующих доклеточного предка и его функциональное особенности.

Таким образом, следует отметить, что в настоящее время нет убедительных моделей для синтеза нуклеотидов при вероятных пребиотических условиях. Несколько реакционных ступеней, вероятно, можно имитировать, но всегда использовать чистые исходные материалы и нередко с очень низким выходом продукта. Обсуждаются мысли о внеземном происхождении основных строительных блоков нуклеиновых кислот, но они не могут способствовать решению актуальной проблемы. Сшивание активированных нуклеотидов до более длинных молекул обычно происходит не спонтанно, а только при добавлении внешних факторов активации к реакции.

Слабая сторона концепции - это невозможность объяснить сам момент скачка от сложных органических соединений к живым организмам - ведь ни в одном из поставленных экспериментов получить жизнь так и не удалось. Кроме того, Опарин допускает возможность самовоспроизведения коацерватов при отсутствии молекулярных систем с функциями генетического кода. Иными словами, без реконструкции эволюции механизма наследственности объяснить процесс скачка от неживого к живому невозможно. Поэтому сегодня считается, что решить эту сложнейшую проблему биологии без привлечения концепции открытых каталитических систем, молекулярной биологии, а также кибернетики не получится

Из-за очень низкой скорости реакции нуклеозидных фосфатов в водном растворе при умеренных температурах и значениях рН эту реакцию невозможно легко смоделировать в лаборатории. Таким образом можно синтезировать только полимеры нескольких нуклеотидов. Самой большой проблемой является источник свободной энергии, который может стимулировать полимеризацию нуклеотидов. Эту проблему можно решить с использованием глинистых минералов. Феррис еще не может объяснить, как глина может выполнить эту задачу, но интенсивно проводит исследования со своей командой, чтобы прояснить этот вопрос.

Основные Гипотезы происхождения жизни на земле.

Биохимическая эволюция

Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5 – 5 млрд. лет.

По мнению многих биологов, в прошлом состояние нашей планеты было мало похоже на нынешнее: вероятно температура на поверхности была очень высокой (4000 - 8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, подвижек и сжатий коры, вызванных охлаждением, происходило образование складок и разрывов.

Эта трудность часто наблюдалась и упоминалась как энантиомерное кросс-ингибирование. Это может поставить под сомнение все наиболее правдоподобные объяснения происхождения механизмов пребиотической репликации. Он фокусируется на следующих предположениях.

Пребиотические основания, сахара, фосфаты присутствовали в достаточном количестве и чистоте. Это образовавшиеся нуклеотиды, основные строительные блоки нуклеиновых кислот и накопленные в небольшом озере. На дне озера были глинистые минералы, которые катализировали образование длинноцепочечных одноцепочечных полинуклеотидов. Некоторые из них были преобразованы в двойные пряди с помощью шаблонного синтеза.

Полагают, что гравитационное поле еще недостаточно плотной планеты не могло удерживать легкие газы: водород, кислород, азот, гелий и аргон, и они уходили из атмосферы. Но простые соединения, содержащие среди прочих эти элементы (вода, аммиак, CO2 и метан). До тех пор, пока температура Земли не упала ниже 100°C, вся вода находилась в парообразном состоянии. Отсутствие кислорода, вероятно, было необходимым условием для возникновения жизни; как показывают лабораторные опыты, органические вещества (основа жизни) гораздо легче образуются в атмосфере бедной кислородом.

Копия рибозима приводит к дальнейшим рибозиму и так далее. Это привело к экспоненциально растущему населению. На этом этапе сценария естественный отбор продолжил бы этот процесс. По словам Дарвина, жизнь началась из первоначального организма. Согласно еще более радикальным идеям созерцания молекулярных биологов, вся биосфера будет происходить из нескольких самовоспроизводящихся полинуклеотидов, образовавшихся на примитивной почве.

Авторы этого утопического молекулярного зрелища вполне могут отметить, что еще предстоит решить многие нерешенные проблемы, прежде чем эта мечта может превратиться в серьезную и убедительную теорию. Кроме того, еще предстоит показать, как рибозимы удерживают продукты вместе в терминах их собственной активности, например, путем включения в мембранную систему, которая будет кратко рассмотрена.

В 1923 г. А.И. Опарин, исходя из теоретических соображений, высказал мнение, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений. Энергию для этих процессов поставляла интенсивная солнечная радиация, главным образом ультрафиолетовое излучение, падавшее на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался «первичный бульон», в котором могла возникнуть жизнь.

С помощью компьютерного моделирования они пытаются имитировать происхождение жизни, а также представлять молекулярную эволюцию в цифровом виде во времени. Все вышеупомянутые трудности и препятствия для саморазвития исходных материалов нуклеиновых кислот в этом случае не должны рассматриваться в этих экспериментальных подходах.

Шустер выбрал способ компьютерного моделирования, потому что он обеспокоен большими препятствиями обычного, г. час белый на основе экспериментальных исследований, основанных на лабораторных экспериментах. Явления, подобные адаптации, составляют от 10 3 до 10 6 поколений. Такие периоды времени слишком велики для экспериментов в обычном смысле. Кроме того, комбинация возможных генотипов становится неуправляемой. Наконец, сложная связь между генотипом и фенотипом затрудняет реалистичное моделирование.

Понять происхождение человека нельзя, не поняв происхождение жизни. А понять происхождение жизни можно, лишь поняв происхождение Вселенной.

Сначала был большой взрыв. Этот взрыв энергии произошел пятнадцать миллиардов лет назад.

Эволюцию можно представить себе в виде Эйфелевой башни. В основании - энергия, выше - материя, планеты, затем жизнь. И наконец на самой верхушке - человек, самое сложное и позже всех появившееся животное.

Единственной необходимой предпосылкой для молекулярной эволюции, контролируемой компьютером, являются молекулы, способные к размножению. Это может затем атаковать отбор и адаптацию при изменении условий окружающей среды. Времена генерации самореплицирующихся молекул чрезвычайно короткие. Явления, такие как адаптация, становятся наблюдаемыми. Оба свойства, последовательность и пространственная структура неразрывно связаны. Таким образом, этот подход предлагает простую модельную систему для изучения процессов адаптации в лаборатории.

Ход эволюции:

15 млрд лет назад: рождение Вселенной;

5 млрд лет назад: рождение Солнечной системы;

4 млрд лет назад: рождение Земли;

3 млрд лет назад: первые следы жизни на Земле;

500 млн лет назад: первые позвоночные;

200 млн лет назад: первые млекопитающие;

70 млн лет назад: первые приматы.

Согласно этой гипотезе, предложенной в 1865г. немецким ученым Г. Рихтером и окончательно сформулированной шведским ученым Аррёниусом в 1895 г., жизнь могла быть занесена на Землю из космоса. Наиболее вероятно попадание живых организмов внеземного происхождения с мётеоритами и космической пылью. Это предположение основывается на данных о высокой устойчивости некоторых организмов и их спор к радиации, глубокому вакууму, низким температурам и другим воздействиям.

Таким образом, исследователи Шустера могут создавать молекулы с оптимальными свойствами, которые впоследствии могут быть синтетически синтезированы. Этот «игрушечный мир», как называет сам Шустер, представляет собой простую, но эффективную модельную модель для моделирования событий молекулярной адаптации. Эта модель, безусловно, подходит для понимания микроэволюционных процессов.

На молекулярном уровне он думает о происхождении репликации в целом, о переводе или происхождении генетического кода, о сложном взаимодействии регуляции генов. На макроскопическом уровне это будет переход от прокариотов к эукариотам, от одноклеточных организмов до многоклеточных организмов или даже к развитию организмов, вплоть до людей.

В 1969 году в Австралии был найден метеорит "Мэрчисон". Он содержал 70 неповрежденных аминокислот, восемь из которых входят в состав человеческого белка!

Многие ученые могли возразить, что белки, окаменевшие при вхождении в атмосферу, были мертвы. Однако недавно был открыт прион, белок, который выдерживает очень высокие температуры. Прион сильнее вируса и способен гораздо быстрее передавать болезнь. Согласно теории Панспермии человек каким то образом берет начало от вируса внеземного происхождения, поразившего обезьян, которые в результате мутировали.

Вопрос о происхождении первых клеток еще предстоит решить с помощью необходимых шагов, упомянутых выше, для выяснения происхождения жизни. Многие ученые считают, что предки всех живых существ были своего рода одноклеточным существом, контейнером, в котором белки и нуклеиновые кислоты, кофакторы и другие были упакованы и окружены относительно непроницаемой оболочкой. Даже на этом следующем необходимом этапе пребиотической эволюции в настоящее время существуют только предположения о возможных механизмах формирования первых клеток.

Центральными компонентами клеточных мембран являются фосфолипиды, которые могут спонтанно собираться в бислоях для образования круговых структур. Хотя нет доказательств наличия синтетических возможностей в пребиотических условиях, существуют модельные системы относительно того, как липидные бислои могут впервые появиться в супе изначального сустава и как можно визуализировать примитивное деление клеток.

Теория самопроизвольного зарождения жизни

Эта теория была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала.

Аристотель (384 – 322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. На основе собственных наблюдений он развивал эту теорию дальше, связываю все организмы в непрерывный ряд – «лестницу природы». «Ибо природа совершает переход от безжизненных объектов к животным с такой плавной последовательностью, поместив между ними существа, которые живут, не будучи при этом животными, что между соседними группами, благодаря их тесной близости, едва можно заметить различия» (Аристотель).

Открытие архебактерий возлагало надежды на то, что эти микроорганизмы могут быть хорошими модельными системами, поскольку первыми предшественниками клеток могли быть. Однако вскоре стало очевидно, что архебактерии, в частности, содержат очень сложные метаболические системы, которые не являются «примитивными» и поэтому вряд ли могут быть использованы в качестве возможного архетипа примитивного одноклеточного живого организма.

Мечта о «стандартной модели» для создания жизни, сформулированной Джойсом и Оргелем, остается в сфере спекуляций. Ни для пребиотического происхождения строительных блоков нуклеиновых кислот и белков нет безопасных экспериментальных данных, ни для прототипа самовоспроизводящейся генетической системы, кроме того, вопрос об организации генетического материала на клеточном уровне невозможен. Также вопрос: курица или яйцо, д. час были ли белки или нуклеиновые кислоты в качестве первых предшественников жизни до сих пор неясно.

Согласно гипотезе Аристотеля о спонтанном зарождении, определенные «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.

«Таковы факты – живое может возникать не только путем спаривания животных, но и разложением почвы. Так же обстоит дело и у растений: некоторые развиваются из семян, а другие как бы самозарождаются под действием всей природы, возникая из разлагающейся земли или определенных частей растений» (Аристотель).

С распространением христианства теория спонтанного зарождения жизни оказалась не в чести: ее признали лишь те, кто верил в колдовство и поклонялся нечистой силе, но эта идея все продолжала существовать где-то на заднем плане в течение еще многих веков.

Теория стационарного состояния

Согласно этой теории, Земля никогда не возникала, а существовала вечно, она всегда способна поддерживать жизнь, а если и изменялась, то очень мало. Виды также существовали всегда.

Оценки возраста земли сильно варьировали – от примерно 6000 лет по расчетам архиепископа Ашера до 5000 10 в 6 степени лет по современным оценкам, основанным на учете скоростей радиоактивного распада. Более совершенные методы датирования дают все более высокие оценки возраста Земли, что позволяет сторонникам теории стационарного состояния считать, что Земля существовала вечно. Согласно этой теории, виды также никогда не возникали, они существовали всегда и у каждого вида есть лишь две альтернативы – либо изменение численности, либо вымирание.

Сторонники этой теории не признают, что наличие или отсутствие определенных ископаемых остатков может указывать на время появления или вымирания того или иного вида, и приводят в качестве примера представителя кистеперых рыб – латимерию. Сторонники теории стационарного состояния утверждают, что только изучая ныне живущие виды и сравнивая их с ископаемыми остатками, можно делать вывод о вымирании, да и в этом случае весьма вероятно, что он окажется неверным. Используя палеонтологические данные для подтверждения теории стационарного состояния, ее немногочисленные сторонники интерпретируют появление ископаемых остатков в экологическом аспекте (увеличение численности, миграции в места благоприятные для сохранения остатков и т. п.). Большая часть доводов в пользу этой теории связана с такими неясными аспектами эволюции, как значение разрывов в палеонтологической летописи, и она наиболее подробно разработана именно в этом направлении.

Креационизм

Креационизм (лат. сгеа - создание). Согласно этой концепции, жизнь и все населяющие Землю виды живых существ являются результатом творческого акта высшего существа в какое-то определенное время. Основные положения креационизма изложены в Библии, в Книге Бытия. Процесс божественного сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для наблюдения. Этого достаточно, чтобы вынести всю концепцию божественного сотворения за рамки научного исследования. Наука занимается только теми явлениями, которые поддаются наблюдению, а поэтому она никогда не будет в состоянии ни доказать, ни отвергнуть эту концепцию.

Теория водного происхождения человека


Она гласит: человек произошел прямо из воды. Т.е. мы когда то были чем-то вроде морских приматов, или гуманоидными рыбами.

«Водную теорию» происхождения человека выдвинул Алистер Харди (1960), а развивала Элейн Морган. После чего идею транслировали многие популяризаторы, например, Ян Линдблад и легендарный подводник Жак Майоль. По мнению Харди и Морган, одним из наших предков была большая обезьяна миоцена из семейства проконсулов, которая, прежде чем стать земной, много миллионов лет обитала в воде.

В пользу происхождения «водной обезьяны» приводятся такие особенности человека:

1. Способность задерживать дыхание, апноэ (в том числе во время вокализации) делает человека ныряльщиком.

2. Работа ловкими кистями и использование орудий сходно с поведением енота-полоскуна и калана.

3. Переходя вброд водоемы, приматы встают на задние конечности. Полуводный образ жизни способствовал развитию прямохождения.

4. Утрата волосяного покрова и развитие подкожного жира (у человека в норме он толще, чем у других приматов) - характерны для водных млекопитающих.

5. Большая грудь помогала удерживать в воде корпус и согревать сердце.

6. Волосы на голове помогали удерживаться младенцу.

7. Удлиненная стопа помогала плавать.

8. Между пальцами рук есть кожная складка.

9. Сморщив нос, человек может закрыть ноздри (обезьяны – нет)

10. Ухо человека меньше набирает воду

И еще например если новорожденного поместить в воду сразу после того как он покинет материнское лоно, он будет себя отлично чувствовать. Он уже умеет плавать. Ведь чтобы новорожденный перешел от стадии рыбы к стадии млекопитающего дышащего воздухом его нужно похлопать по спине.

50 млн лет назад дельфины вышли из воды и стали сухопутными животными. А потом по неизвестным причинам решили вернуться в воду. Нам остается лишь последовать их примеру.

Трансформизм

Выдвинута в 1815 году Жаном Батистом Ламарком

Изменения внешней среды влекут за собой изменение клеток.

Разлом вынудил(!!) первых доисторических людей жить в безлесной саванне. Они не могли более взбираться на деревья, спасаясь от хищников. Люди вынуждены были встать на задние лапы, чтобы издалека видеть врага в высокой траве. Постоянно опасаясь нападения, люди выпрямились и превратились из "животных, в основном живущих на деревьях и иногда принимающихвертикальное положение" в "прямоходящих животных иногда взирающихся на деревья".

Использование нижних конечностей освободило верхние лапы, теперь в руках можно было держать палку и использовать ее как оружие.

Прямохождение открыло эру и других изменений, в частности в костяке.Таз сделался корзиной для внутренностей. Раньше соединение позвоночного столба и черепа было горизонтальным. Теперь оно стало вертикальным, и объем черепа увеличился, так как спинной мозг больше не мешал ему.

За 2 млн лет объем мозга вырастает с 450 до 1000 кубических сантиметров, затем от 1000 до современных 1450.

У нас почти не осталось шерсти. Шерсть была нужна чтобы младенцы могли вцепиться в живот матери. Это стало ненужным, когда матери смогли взять детей на руки. И шерсть осталась на макушке черепа для защиты от солнца. Над глазами (брови) защита от дождя.

Отличие от дарвинизма в том что, дарвинисты считают, что люди - это животные, у которых случайно оказался ген, позволивший им встать на задние лапы. А ламаркисты считают, что любое животное если это необходимо, может трансформировать свои гены.

Идеи Ламарка дают каждому надежду на лучшее. А Дарвин, если ты представитель не самого удачного вида, не оставляет тебе шанса.

Развиваясь в течение 9 мес, зародыш человека проживают всю историю своего вида.

12-тидневный эмбрион напоминал крошечного удлиненного червяка с большими глазами. Похож на зародыш рыбы.

Когда человеческому эмбриону тридцать один день, он похож на ящерицу, в 9 недель - на детеныша землеройки, в 18 недель ничем не отличается от зародыша обезьяны.

Дарвинизм

Материалистическая теория эволюции (исторического развития) органического мира Земли, основанная на воззрениях Ч. Дарвина.

Два основных двигателя эволюции. Первое- случай, второе - отбор видов. Природа ставила одновременно тысячи эксперементов. А естественный отбор затем устраняет наименее приспособленных.

Картина истории предков человека.

70 млн лет назад: появление первых приматов. Они были насекомоядными и очень походили на землероек.

40 млн лет назад; появление первых лемуров.У этих животных уже были характерные для человека черты: отстоящий большой палец, поские ногти, плоское лицо. Расположенный под углом к ладони большой палец позволяет хватать предметы и пользоваться ими как инструментами. Плоские ногти вместо когтей дают возможность сжимать кулак. У лемуров у первых появилась кисть руки.Благодаря плоским лицам лемуры начали видеть объемно. Животные, у которых глаза расположены по бокам морды, не могут определять расстояние и различать рельеф. Улемуров морда перестала быть вытянутой, и глаза окаались на одной плоскости. Лемуры обрели возможность видеть мир в трех измерениях.

20 млн лет назад лемуров обогнали обезьяны, их гораздо более ловкие мутировавшие кузены.

Примерно между 4,4 и 2,8 млн лет тому назад, появляется ветвь обезьян-австралопитеков, из которых позднее вышли люди. Человек стал отличаться от гориллы или шимпанзе благодаря изменениям климата. Обезьяны населяли Восточную Африку, где произошло землятресение, спровоцировавшее разлом почвы, так называемый рифт. Разлом вызвал образование трех особых климатических зон: зону густых лесов, гористую зону, зону саванн с редкой растительностью. В густых лесах выжили только предки шимпанзе, в горах предки горилл, а в зоне саванн с редкой растительностью - австралопитеки, то есть наши предки.

Основным различием между австралопитеком и доисторической гориллой или шимпанзе было исчезновение хвоста, необходимого для того, чтобы удерживать равновесие при прыжках с ветки на ветку. Дотронетесь до вашего копчика. Этот бесполезный маленький обрубок хвоста внизу спины - последний признак древесной обезьяны, которой человек был до появления разлома.

Отсутствие хвоста - не единственное различие между человеком и обезьяной. Постепенно распрямился торс, увеличился объем черепа, лицо сделалось плоским, и у человека повилось стереоскопическое зрение. Не забудем и опущение гортани. Раньше приматы издавали лишь орчание, опущение же гортани значительно расширело диапазон звуков.Исчезла шерсть, период детства удлиннился, то есть удлинилось время для обучения детей.Возникли более сложные социальные отношения.

И вот он, ХОМО САПИЕНС, то есть мы. Одна из совершенных форм творения природы.