ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Слои земного шара начиная с ядра. Строение земли и его особенности

> > Из чего состоит Земля

Описание состава Земли для детей с фото: строение планеты на рисунке, из чего состоит кора, мантия и ядро, как выглядит верхняя оболочка, толщина слоев.

Земля - третья планета от Солнца, но и единственная пока планета в Солнечной системе и известной Вселенной, на которой проживает развитая форма жизни. Это родной дом, который детям будет полезно изучить. Давайте детально рассмотрим строение Земли, в чем помогут наши фото, схемы и рисунки.

Начать объяснение для детей про состав Земли следует с того, что мы живем на уникальной планете, так как на ней есть вода. Конечно, существуют и другие миры, а также спутники, где есть атмосфера, лед и даже океаны, но лишь нам повезло обладать всеми факторами для создания и поддержания жизни.

Для самых маленьких важно узнать, что земные океаны занимают примерно 70% всей поверхности, а в глубину уходят на 4 км. В жидкой форме пресная вода находится в реках, озерах и в форме атмосферного водяного пара, который приводит к большому погодному разнообразию.

Следует объяснить детям , что Земля многослойна. Внешний представлен корой. Его заполняют океанические бассейны и континенты. Земная кора занимает 5-75 км. Наиболее плотные части прячутся под континентами, а тонкие – под океанами. Теперь давайте изучим состав Земли по слоям: кора, мантия, ядро.

Кора Земли - объяснение для детей

Земная кора содержит такие элементы как: кислород (47%), кремний (27%), алюминий (8%), железо (5%), кальций (4%), и по 2% магния, калия и натрия. Она создана в виде гигантских пластин, которые двигаются по жидкой мантии. Важно объяснить детям , что, хотя мы и не замечаем, но плиты не прекращают движения. Когда они сталкиваются, мы ощущаем землетрясения, а если одна наедет на другую, то образуется глубокий окоп или горы. Эти движения описывает теория тектоники плит.

Мантия Земли - объяснение для детей

Далее, толщиною в 2890 км, располагается мантия. Она представлена силикатными породами, богатыми на магний и железо. Из-за интенсивного тепла создаются скалы. Затем они остывают и снова возвращаются к ядру. Полагают, что именно это приводит тектонические плиты в движение. Когда мантии удается пробиться сквозь кору, вы видите извержение вулкана.

Ядро Земли - объяснение для детей

Наверняка, даже для самых маленьких понятно, что внутри Земли расположено ядро. Интересно, что оно состоит из двух половинок: внутреннее (твердое) с радиусом в 1220 км окружено внешним (жидкое – сплав никеля и железа) с толщиною в 2180 км. Пока планета вращается в привычном темпе, внутреннее ядро делает обороты отдельно, образуя магнитное поле. Можно также рассказать детям о том, как формируются полярные сияния. Ведь для этого заряженным частичкам солнечного ветра нужно пройти в молекулы воздуха над магнитными полюсами планеты и тогда эти молекулы начинают сиять.

Теперь вы знаете из чего состоит Земля. Если детям или школьникам любого возраста будет любопытно узнать больше интересных фактов и подробностей о третьей планете от Солнца, то обязательно посетите остальные страницы раздела. Не забудьте воспользоваться 3D-моделью Солнечной системы, где показаны все планеты, а также карта Венеры, ее поверхность и особенности вращения по орбите. В остальном вам всегда помогут наши, фото, картинки, рисунки, а также онлайн телескоп, функционирующий в режиме реального времени. Строение Земли невероятно просто понять, если следовать визуальному ряду.

Земля относится к планетам земной группы, и, в отличие от газовых гигантов, таких как Юпитер, имеет твёрдую поверхность. Это крупнейшая из четырёх планет земной группы в Солнечной системе , как по размеру, так и по массе. Кроме того, Земля среди этих четырёх планет имеет наибольшие плотность, поверхностную гравитацию и магнитное поле . Это единственная известная планета с активной тектоникой плит.

Недра Земли делятся на слои по химическим и физическим (реологическим) свойствам, но в отличие от других планет земной группы, Земля имеет ярко выраженное внешнее и внутреннее ядро. Наружный слой Земли представляет собой твёрдую оболочку, состоящую главным образом из силикатов. От мантии она отделена границей с резким увеличением скоростей продольных сейсмических волн — поверхностью Мохоровичича. Твёрдая кора и вязкая верхняя часть мантии составляют литосферу. Под литосферой находится астеносфера , слой относительно низкой вязкости, твёрдости и прочности в верхней мантии .

Значительные изменения кристаллической структуры мантии происходят на глубине 410-660 км ниже поверхности, охватывающей переходную зону, которая отделяет верхнюю и нижнюю мантию. Под мантией находится жидкий слой, состоящий из расплавленного железа с примесями никеля, серы и кремния — ядро Земли. Сейсмические измерения показывают, что оно состоит из 2 частей: твёрдого внутреннего ядра с радиусом ~1220 км и жидкого внешнего ядра, с радиусом ~ 2250 км.

Форма

Форма Земли (геоид) близка к сплюснутому эллипсоиду. Расхождение геоида с аппроксимирующим его эллипсоидом достигает 100 метров.

Вращение Земли создаёт экваториальную выпуклость, поэтому экваториальный диаметр на 43 км больше, чем полярный. Высочайшей точкой поверхности Земли является гора Эверест (8848 м над уровнем моря), а глубочайшей — Марианская впадина (10 994 м под уровнем моря). Из-за выпуклости экватора самыми удалёнными точками поверхности от центра Земли являются вершина вулкана Чимборасо в Эквадоре и гора Уаскаран в Перу.

Химический состав

Масса Земли приблизительно равна 5,9736·1024 кг. Общее число атомов, составляющих Землю, ≈ 1,3-1,4·1050. Она состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %); на остальные элементы приходится 1,2 %. Из-за сегрегации по массе область ядра, предположительно, состоит из железа (88,8 %), небольшого количества никеля (5,8 %), серы (4,5 %) и около 1 % других элементов. Примечательно, что углерода , являющегося основой жизни, в земной коре всего 0,1 %.


Геохимик Франк Кларк вычислил, что земная кора чуть более, чем на 47 % состоит из кислорода. Наиболее распространённые породообразующие минералы земной коры практически полностью состоят из оксидов ; суммарное содержание хлора, серы и фтора в породах обычно составляет менее 1 %. Основными оксидами являются кремнезём (SiO 2), глинозём (Al 2 O 3), оксид железа (FeO), окись кальция (CaO), окись магния (MgO), оксид калия (K 2 O) и оксид натрия (Na 2 O). Кремнезём служит главным образом кислотной средой, формирует силикаты; природа всех основных вулканических пород связана с ним.

Внутреннее строение

Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя — твёрдая.

Внутреннее тепло

Внутренняя теплота планеты обеспечивается сочетанием остаточного тепла, оставшегося от аккреции вещества, которая происходила на начальном этапе формирования Земли (около 20 %) и радиоактивным распадом нестабильных изотопов: калия-40 , урана-238 , урана-235 и тория-232. У трёх из перечисленных изотопов период полураспада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 6000 °С (10,830 °F) (больше, чем на поверхности Солнца), а давление может достигать 360 ГПа (3,6 млн атм). Часть тепловой энергии ядра передаётся к земной коре посредством плюмов. Плюмы приводят к появлению горячих точек и траппов. Поскольку большая часть тепла, производимого Землёй, обеспечивается радиоактивным распадом, то в начале истории Земли, когда запасы короткоживущих изотопов ещё не были истощены, энерговыделение нашей планеты было гораздо больше, чем сейчас.

Больше всего энергии теряется Землёй посредством тектоники плит, подъёма вещества мантии на срединно-океанические хребты. Последним основным типом потерь тепла является теплопотеря сквозь литосферу, причём большее количество теплопотерь таким способом происходит в океане, так как земная кора там гораздо тоньше, чем под континентами.

Литосфера

Атмосфера

Атмосфера (от. др.-греч. ?τμ?ς — пар и σφα?ρα — шар) — газовая оболочка, окружающая планету Земля; состоит из азота и кислорода, со следовыми количествами водяного пара, диоксида углерода и других газов. С момента своего образования она значительно изменилась под влиянием биосферы . Появление оксигенного фотосинтеза 2,4-2,5 млрд лет назад способствовало развитию аэробных организмов, а также насыщению атмосферы кислородом и формированию озонового слоя, который оберегает всё живое от вредных ультрафиолетовых лучей.

Атмосфера определяет погоду на поверхности Земли, защищает планету от космических лучей, и частично — от метеоритных бомбардировок. Она также регулирует основные климатообразующие процессы: круговорот воды в природе, циркуляцию воздушных масс, переносы тепла. Молекулы атмосферных газов могут захватывать тепловую энергию, мешая ей уйти в открытый космос, тем самым повышая температуру планеты. Это явление известно как парниковый эффект. Основными парниковыми газами считаются водяной пар, двуокись углерода, метан и озон. Без этого эффекта теплоизоляции средняя поверхностная температура Земли составила бы от −18 до −23 °C (при том, что в действительности она равна 14,8 °С), и жизнь скорее всего не существовала бы.

В нижней части атмосферы содержится около 80 % общей её массы и 99 % всего водяного пара (1,3-1,5·1013 т), этот слой называется тропосферой . Его толщина неодинакова и зависит от типа климата и сезонных факторов: так, в полярных регионах она составляет около 8-10 км, в умеренном поясе до 10-12 км, а в тропических или экваториальных доходит до 16-18 км. В этом слое атмосферы температура опускается в среднем на 6 °С на каждый километр при движении в высоту. Выше располагается переходный слой — тропопауза, отделяющий тропосферу от стратосферы. Температура здесь находится в пределах 190-220 K.

Стратосфера — слой атмосферы, который расположен на высоте от 10-12 до 55 км (в зависимости от погодных условий и времени года). На него приходится не более 20 % всей массы атмосферы. Для этого слоя характерно понижение температуры до высоты ~25 км, с последующим повышением на границе с мезосферой почти до 0 °С. Эта граница называется стратопаузой и находится на высоте 47-52 км. В стратосфере отмечается наибольшая концентрация озона в атмосфере, который оберегает все живые организмы на Земле от вредного ультрафиолетового излучения Солнца. Интенсивное поглощение солнечного излучения озоновым слоем и вызывает быстрый рост температуры в этой части атмосферы.

Мезосфера расположена на высоте от 50 до 80 км над поверхностью Земли, между стратосферой и термосферой. Она отделена от этих слоёв мезопаузой (80-90 км). Это самое холодное место на Земле, температура здесь опускается до −100 °C. При такой температуре вода, содержащаяся в воздухе, быстро замерзает, иногда формируя серебристые облака. Их можно наблюдать сразу после захода Солнца, но наилучшая видимость создаётся, когда оно находится от 4 до 16° ниже горизонта. В мезосфере сгорает большая часть метеоритов, проникающих в земную атмосферу. С поверхности Земли они наблюдаются как падающие звёзды. На высоте 100 км над уровнем моря находится условная граница между земной атмосферой и космосом — линия Кармана .

В термосфере температура быстро поднимается до 1000 К, это связано с поглощением в ней коротковолнового солнечного излучения. Это самый протяжённый слой атмосферы (80-1000 км). На высоте около 800 км рост температуры прекращается, поскольку воздух здесь очень разрежён и слабо поглощает солнечную радиацию.

Ионосфера включает в себя два последних слоя. Здесь происходит ионизация молекул под действием солнечного ветра и возникают полярные сияния.

Экзосфера — внешняя и очень разреженная часть земной атмосферы. В этом слое частицы способны преодолевать вторую космическую скорость Земли и улетучиваться в космическое пространство. Это вызывает медленный, но устойчивый процесс, называемый диссипацией (рассеянием) атмосферы. В космос ускользают в основном частицы лёгких газов: водорода и гелия. Молекулы водорода, имеющие самую низкую молекулярную массу, могут легче достигать второй космической скорости и утекать в космическое пространство более быстрыми темпами, чем другие газы. Считается, что потеря восстановителей, например водорода, была необходимым условием для возможности устойчивого накопления кислорода в атмосфере. Следовательно, свойство водорода покидать атмосферу Земли, возможно, повлияло на развитие жизни на планете. В настоящее время большая часть водорода, попадающая в атмосферу, преобразуется в воду, не покидая Землю, а потеря водорода происходит в основном от разрушения метана в верхних слоях атмосферы.

Химический состав атмосферы

У поверхности Земли осушенный воздух содержит около 78,08 % азота (по объёму), 20,95 % кислорода, 0,93 % аргона и около 0,03 % углекислого газа. Объемная концентрация компонентов зависит от влажности воздуха — содержания в нём водяного пара, которое колеблется от 0,1 до 1,5 % в зависимости от климата, времени года, местности. Например, при 20 °С и относительной влажности 60 % (средняя влажность комнатного воздуха летом) концентрация кислорода в воздухе составляет 20,64 %. На долю остальных компонентов приходится не более 0,1 %: это водород, метан, оксид углерода, оксиды серы и оксиды азота и другие инертные газы, кроме аргона.

Также в воздухе всегда присутствуют твёрдые частицы (пыль — это частицы органических материалов, пепел, сажа, пыльца растений и др., при низких температурах — кристаллы льда) и капли воды (облака, туман) — аэрозоли. Концентрация твёрдых частиц пыли уменьшается с высотой. В зависимости от времени года, климата и местности концентрация частиц аэрозолей в составе атмосферы изменяется. Выше 200 км основной компонент атмосферы — азот. На высоте свыше 600 км преобладает гелий, а от 2000 км — водород («водородная корона»).

Биосфера

Биосфера (от др.-греч. βιος — жизнь и σφα?ρα — сфера, шар) — это совокупность частей земных оболочек (лито-, гидро- и атмосферы), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности. Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Она начала формироваться не ранее, чем 3,8 млрд лет назад, когда на нашей планете стали зарождаться первые организмы. Она включает в себя всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает несколько миллионов видов растений, животных, грибов и микроорганизмов.

Биосфера состоит из экосистем, которые включают в себя сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющие обмен веществом и энергией между ними. На суше они разделены главным образом географическими широтами, высотой над уровнем моря и различиями по выпадению осадков. Наземные экосистемы, находящиеся в Арктике или Антарктике, на больших высотах или в крайне засушливых районах, относительно бедны растениями и животными; разнообразие видов достигает пика во влажных тропических лесах экваториального пояса.

Магнитное поле Земли

Магнитное поле Земли в первом приближении представляет собой диполь, полюсы которого расположены рядом с географическими полюсами планеты. Поле формирует магнитосферу, которая отклоняет частицы солнечного ветра. Они накапливаются в радиационных поясах — двух концентрических областях в форме тора вокруг Земли. Около магнитных полюсов эти частицы могут «высыпаться» в атмосферу и приводить к появлению полярных сияний.

Согласно теории «магнитного динамо», поле генерируется в центральной области Земли, где тепло создаёт протекание электрического тока в жидком металлическом ядре. Это в свою очередь приводит к возникновению у Земли магнитного поля. Конвекционные движения в ядре являются хаотичными; магнитные полюсы дрейфуют и периодически меняют свою полярность. Это вызывает инверсии магнитного поля Земли, которые возникают в среднем несколько раз за каждые несколько миллионов лет. Последняя инверсия произошла приблизительно 700 000 лет назад.

Магнитосфера — область пространства вокруг Земли, которая образуется, когда поток заряженных частиц солнечного ветра отклоняется от своей первоначальной траектории под воздействием магнитного поля. На стороне, обращённой к Солнцу, толщина её головной ударной волны составляет около 17 км и расположена она на расстоянии около 90 000 км от Земли. На ночной стороне планеты магнитосфера вытягивается, приобретая длинную цилиндрическую форму.

Когда заряженные частицы высокой энергии сталкиваются с магнитосферой Земли, то появляются радиационные пояса (пояса Ван Аллена). Полярные сияния возникают когда солнечная плазма достигает атмосферы Земли в районе магнитных полюсов.

Есть внутренние и внешние оболочки, взаимодействующие между собой.

Внутреннее строение Земли

Для изучения внутреннего строения Земли используют бурение сверхглубоких скважин (самая глубокая Кольская – 11 000 м. прошла менее 1/400 земного радиуса). Но большая часть сведений о строении Земли получена с помощью сейсмического метода. На основании данных, полученных этими методами, создана общая модель строения Земли.

В центре планеты расположено земное ядро — (R=3500 км) состоит предположительно из железа с примесью более легких элементов. Существует гипотеза, что ядро состоит из водорода, который под высоким может перейти в металлическое состояние. Внешний слой ядра – жидкое, расплавленное состояние; внутреннее ядро радиусом 1250 км твердое. Температура в центре ядра, видимо, до 5 – 6 тыс. градусов.

Ядро окружено оболочкой – мантией. Мантия имеет толщину до 2900 км, объём – 83 % объема планеты. Она состоит из тяжёлых минералов, богатых магнием и железом. Несмотря на высокую температуру (выше 2000?), большая часть вещества мантии вследствие огромного давления находится в твердом кристаллическом состоянии. Верхняя мантия на глубине от 50 до 200 км имеет подвижный слой, называемый астеносфера (слабая сфера). Она отличается высокой пластичностью, обусловленной мягкостью образующего её вещества. Именно с этим слоем связано и другие важные процессы на Земле. Его толщина – 200 – 250 км. Вещество астеносферы, проникающее в земную кору и изливающееся на поверхность, называется магмой.

Земная кора – твердая слоистая внешняя оболочка Земли мощностью от 5 км под океанами до 70 км под горными сооружениями материков.

  • Континентальную (материковую)
  • Океаническую

Континентальная кора более мощная и более сложная. Она имеет 3 слоя:

  • Осадочный (10-15 км, породы в основном осадочные)
  • Гранитный (5-15 км., породы этого слоя в основном метаморфические, по своим свойствам близки к граниту)
  • Бальзатовый (10-35 км., породы этого слоя – магматические)

Океаническая кора более тяжелая, гранитный слой в ней отсутствует, осадочный сравнительно тонкий, в основном она бальзатовая.

В областях перехода от материка к океану кора имеет переходный характер.

Земная кора и верхняя часть мантии образуют оболочку, которая называется (от греч. litos – камень). Литосфера – твердая оболочка Земли, включающая земную кору и верхний слой мантии, лежащий на горячей астеносфере. Мощность литосферы в среднем 70 – 250 км, из которых 5 – 70 км приходится на земную кору. Литосфера не сплошная оболочка, она разделена гигантскими разломами на . Большинство плит включают в себя как материковую, так и океаническую кору. Выделяют 13 литосферных плит. Но наиболее крупными являются: Американская, Африканская, Индо-Австралийская, Тихоокеанская.

Под воздействием процессов, происходящих в земных недрах, литосфера совершает движения. Литосферные плиты медленно движутся друг относительно друга со скоростью 1 – 6 см в год. Кроме того, постоянно происходят их вертикальные движения. Совокупность горизонтальных и вертикальных движений литосферы, сопровождающихся возникновением разломов и складок земной коры, называются . Они бывают медленными и быстрыми.

Силы, вызывающие расхождение литосферных плит возникают при перемещении вещества мантии. Мощные восходящие потоки этого вещества расталкивают плиты, разрывают земную кору, образуя в ней глубинные разломы. Там, где это вещество поднимается наружу, возникают в литосфере разломы, и плиты начинают раздвигаться. Внедряющаяся по разломам магма, застывая, наращивает края плит. В результате по обе стороны разлома возникают валы, и . Они обнаружены во всех океанах и образуют единую систему, общей протяженностью 60 000 тыс км. Высота хребтов до 3000 м. Наибольшей ширины такой хребет достигает в юго-восточной части , где скорость раздвижения плит 12 – 13 см/год. Он не занимает срединного положения и называется тихоокеанским поднятием. На месте разлома, в осевой части срединно-океанических хребтов, обычно находятся ущелья – рифты. Их ширина от нескольких десятков километров в верхней части до нескольких километров у дна. На дне рифтов располагаются небольшие вулканы и горячие источники. В рифтах из поднимающейся магмы рождается новая океаническая кора. Чем дальше от рифта, тем кора старше.

Вдоль других границ плит наблюдается столкновение литосферных плит. Оно происходит по-разному. При столкновении плиты с океанической корой и плиты с материковой корой первая погружается под вторую. При этом возникают глубоководные желоба, островные дуги, а на суше горы. Если сталкиваются две плиты с материковой корой, то происходит смятие в , вулканизм и образование горных областей (например, – это сложные процессы, возникающие при движении магмы, которая образуется в отдельных очагах и на разных глубинах астеносферы. Очень редко она образуется в земной коре. Различают два основных типа магм – базальтовая (основная) и гранитная (кислая).

Извергаясь на поверхность Земли, магма образует вулканы. Такой магматизм называется эффузивным. Но чаще магма внедряется в земную кору по трещинам. Такой магматизм называется интрузивным.

Оболочечное строение Земли. Физическое состояние (плотность, давление, температура), химический состав, движение сейсмических волн во внутренних частях Земли. Земной магнетизм. Источники внутренней энергии планеты. Возраст Земли. Геохронология.

Земля, как и другие планеты, имеет оболочечное строение. При прохождении сквозь тело Земли сейсмических волн (продольных и поперечных) скорости их на некоторых глубинных уровнях заметно меняются (причем скачкообразно), что свидетельствует об изменении свойств проходимой волнами среды. Современные представления о распределении плотности и давления внутри Земли даны в таблице.

Изменение плотности и давления с глубиной внутри Земли

(С.В Калесник, 1955)

Глубина, км

Плотность, г/см 3

Давление, млн. атм

Из таблицы видно, что в центре Земли плотность достигает 17,2 г/см 3 и что она особенно резким скачком (от 5,7 к 9,4) меняется на глубине 2900 км, а затем на глубине 5 тыс. км. Первый скачок позволяет выделить плотное ядро, а второй – подразделить это ядро на внешнюю (2900-5000 км) и внутреннюю (от 5 тыс. км до центра) части.

Зависимость скорости продольных и поперечных волн от глубины

Глубина, км

Скорость продольных волн, км/сек

Скорость поперечных волн, км/сек

60 (сверху)

60 (снизу)

2900 (сверху)

2900 (снизу)

5100 (сверху)

5100 (снизу)

Таким образом, имеется в сущности два резких перелома скоростей: на глубине 60 км и на глубине 2900 км. Иными словами отчетливо обособляются земная кора и внутреннее ядро. В промежуточном между ними поясе, а также внутри ядра налицо лишь изменение темпа увеличения скоростей. Видно также, что Земля до глубины 2900 км находится в твердом состоянии, т.к. через эту толщу свободно проходят поперечные упругие волны (волны сдвига), которые только и могут возникать и распространятся в твердой среде. Прохождение поперечных волн сквозь ядро не наблюдалось и это давало основания считать его жидким. Однако новейшие расчеты показывают, что модуль сдвига в ядре невелик, но все же не равен нулю (как это характерно для жидкости) и, стало быть, ядро Земли ближе к твердому, чем жидкому состоянию. Разумеется, в данном случае понятия «твердого» и «жидкого» нельзя отождествлять с аналогичными понятиями, применяемыми к агрегатным состояниям вещества наземной поверхности: внутри Земли господствуют высокие температуры и огромные давления.

Таким образом, во внутреннем строении Земли выделяют земную кору, мантию и ядро.

Земная кора – первая оболочка твердого тела Земли, имеет мощность 30-40 км. По объему она составляет 1,2% объема Земли, по массе – 0,4%, средняя плотность равна 2,7 г/см 3 . Состоит преимущественно из гранитов; осадочные породы в ней имеют подчиненное значение. Гранитная оболочка, в составе которой огромную роль играют кремний и алюминий, называется «сиалической» («сиаль»). От мантии земная кора отделена сейсмическим разделом, названным границей Мохо , от фамилии сербского геофизика А. Мохоровичича (1857-1936), открывшего этот «сейсмический раздел». Эта граница четкая и наблюдается во всех местах Земли на глубинах от 5 до 90 км. Раздел Мохо не является просто границей между породами различного типа, а представляет собой плоскость фазового перехода между эклогитами и габбро мантии и базальтами земной коры. При переходе из мантии в кору давление так падает, что габбро переходят в базальты (кремний, алюминий + магний – «сима» - силиций+магний). Переход сопровождается увеличением объема на 15% и, соответственно, уменьшением плотности. Поверхность Мохо считают нижней границей земной коры. Важная особенность этой поверхности состоит в том, что она в общих чертах представляет собой как бы зеркальное отражение рельефа земной поверхности: под океанами она выше, под континентальными равнинами ниже, под наиболее высокими горами опускается ниже всего (это так называемые корни гор).

Выделяют четыре типа земной коры, они соответствуют четырем наиболее крупным формам поверхности Земли. Первый тип называется материковым, его мощность 30-40 км, под молодыми горами она увеличивается до 80 км. Этот тип земной коры соответствует в рельефе материковым выступам (включается подводная окраина материка). Наиболее распространено деление ее на три слоя: осадочный, гранитный и базальтовый. Осадочный слой , толщиной до 15-20 км, сложен слоистыми осадками (преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы). Гранитный слой (мощность 10-15 км) состоит из метаморфических и изверженных кислых пород с содержанием кремнезема свыше 65 %, близких по своим свойствам к граниту; наиболее распространены гнейсы, гранодиориты и диориты, граниты, кристаллические сланцы). Нижний слой, наиболее плотный, толщиной 15-35 км, получил название базальтового за сходство с базальтами. Средняя плотность материковой коры 2,7 г/см 3 . Между гранитным и базальтовым слоями лежит граница Конрада, названная по фамилии открывшего ее австрийского геофизика. Название слоев – гранитный и базальтовый – условны, они даны по скоростям прохождения сейсмических волн. Современное название слоев несколько иное (Е.В. Хаин, М.Г. Ломизе): второй слой называется гранитно-метаморфическим, т.к. собственно гранитов в нем почти нет, сложен он гнейсами и кристаллическими сланцами. Третий слой – гранулитобазитовый, его образуют сильнометаморфизованные горные породы.

Второй тип земной коры – переходный, или геосинклинальный – соответствует переходным зонам (геосинклиналям). Расположены переходные зоны у восточных берегов материка Евразии, у восточных и западных берегов Северной и Южной Америки. Имеют следующее классическое строение: котловина окраинного моря, островные дуги и глубоководный желоб. Под котловинами морей и глубоководными желобами нет гранитного слоя, земная кора состоит из осадочного слоя повышенной мощности и базальтового. Гранитный слой появляется только в островных дугах. Средняя мощность геосинклинального типа земной коры 15-30 км.

Третий тип – океаническая земная кора, соответствует ложу океана, мощность коры 5-10 км. Имеет двухслойное строение: первый слой – осадочный, образован глинисто-кремнисто-карбонатными породами; второй слой состоит из полнокристаллических магматических пород основного состава (габбро). Между осадочным и базальтовым слоями выделяется промежуточный слой, состоящий из базальтовых лав с прослоями осадочных пород. Поэтому иногда говорят о трехслойном строении океанической коры.

Четвертый тип – рифтогенная земная кора, она характерна для срединно-океанических хребтов, ее мощность 1,5-2 км. В срединно-океанических хребтах близко к поверхности подходят породы мантии. Мощность осадочного слоя 1-2 км, базальтовый слой в рифтовых долинах выклинивается.

Существуют понятия «земная кора» и «литосфера». Литосфера – каменная оболочка Земли, образованная земной корой и частью верхней мантии. Мощность ее составляет 150-200 км, ограничена астеносферой. Только верхняя часть литосферы называется земной корой.

Мантия по объему составляет 83% объема Земли и 68% ее массы. Плотность вещества возрастает до 5,7 г/см 3 . На границе с ядром температура увеличивается до 3800 0 С, давление – до 1,4 х 10 11 Па. Выделяют верхнюю мантию до глубины 900 км и нижнюю – до 2900 км. В верхней мантии на глубине 150-200 км присутствует астеносферный слой. Астеносфера (греч. asthenes – слабый) – слой пониженной твердости и прочности в верхней мантии Земли. Астеносфера – основной источник магмы, в ней располагаются очаги питания вулканов и происходит перемещение литосферных плит.

Ядро занимает 16% объема и 31% массы планеты. Температура в нем достигает 5000 0 С, давление – 37 х 10 11 Па, плотность – 16 г/см 3 . Ядро делится на внешнее, до глубины 5100 км, и внутреннее. Внешнее ядро – расплавленное, состоит из железа или металлизованных силикатов, внутреннее – твердое, железоникелевое.

От плотности вещества зависит масса небесного тела, масса определяет размеры Земли и силу тяжести. Наша планета имеет достаточные размеры и силу тяжести, она удержала гидросферу и атмосферу. В ядре Земли происходит металлизация вещества, обусловливая образование электрических токов и магнитосферы.

Вокруг Земли существуют разнообразные поля, наиболее существенное влияние на ГО оказывают гравитационное и магнитное.

Гравитационное поле на Земле – это поле силы тяжести. Сила тяжести – равнодействующая сила между силой притяжения и центробежной силой, возникающей при вращении Земли. Центробежная сила достигает максимума на экваторе, но и здесь она мала и составляет 1/288 от силы тяжести. Сила тяжести на земле в основном зависит от силы притяжения, на которую оказывает влияние распределение масс внутри Земли и на поверхности. Сила тяжести действует повсеместно на земле и направлена по отвесу к поверхности геоида. Напряженность гравитационного поля равномерно уменьшается от полюсов к экватору (на экваторе больше центробежная сила), от поверхности вверх (на высоте 36 000 км равна нулю) и от поверхности вниз (в центре Земли сила тяжести равна нулю).

Нормальным гравитационным полем Земли называется такое, которое было бы у Земли, если бы она имела форму эллипсоида с равномерным распределением масс. Напряженность реального поля в конкретной точке отличается от нормального, возникает аномалия гравитационного поля. Аномалии могут быть положительными и отрицательными: горные хребты создают дополнительную массу и должны бы вызвать положительные аномалии, океанические впадины, наоборот – отрицательные. Но на самом деле земная кора находится в изостатическом равновесии.

Изостазия (от греч. isostasios – равный по весу) – уравновешивание твердой, относительно легкой земной коры более тяжелой верхней мантией. Теория равновесия была выдвинута в 1855 г. английским ученым Г.Б. Эйри. Благодаря изостазии избытку масс выше теоретического уровня равновесия соответствует недостаток их внизу. Это выражается в том, что на определенной глубине (100-150 км) в слое астеносферы вещество перетекает в те места, где имеется недостаток масс на поверхности. Только под молодыми горами, где еще полностью компенсация не произошла, наблюдаются слабые положительные аномалии. Однако равновесие непрерывно нарушается: в океанах происходит отложение наносов, под их тяжестью дно океанов прогибается. С другой стороны, горы разрушаются, высота их уменьшается, значит уменьшается и масса.

Сила тяжести создает фигуру Земли, она является одной из ведущих эндогенных сил. Благодаря ей выпадают атмосферные осадки, текут реки, формируются горизонты подземных вод, наблюдаются склоновые процессы. Силой тяжести объясняется максимальная высота гор; считается, что на нашей Земле не может быть гор выше 9 км. Сила тяжести удерживает газовую и водную оболочки планеты. Атмосферу планеты покидают только самые легкие молекулы – водорода и гелия. Давление масс вещества, реализующееся в процессе гравитационной дифференциации в нижней мантии, наряду с радиоактивным распадом порождает тепловую энергию – источник внутренних (эндогенных) процессов, перестраивающих литосферу.

Тепловой режим поверхностного слоя земной коры (в среднем до 30 м) имеет температуру, определяемую солнечным теплом. Это гелиометрический слой , испытывающий сезонные колебания температуры. Ниже – еще более тонкий горизонт постоянной температуры (около 20 м), соответствующий среднегодовой температуре места наблюдения. Ниже постоянного слоя температура с глубиной нарастает – геотермический слой . Для количественного определения величины этого нарастания двумя взаимно связанными понятиями. Изменение температуры при углублении в землю на 100 м называется геотермическим градиентом (колеблется от 0,1 до 0,01 0 С/м и зависит от состава горных пород, условий их залегания), а расстояние по отвесу, на которое необходимо углубиться, чтобы получить повышение температуры на 1 0 , называется геотермической ступенью (колеблется от 10 до 100 м/ 0 С).

Земной магнетизм – свойство Земли, обусловливающее существование вокруг нее магнитного поля, вызванного процессами, происходящими на границе ядро-мантия. Впервые о том, что Земля – магнит, человечество узнало благодаря работам У. Гильберта.

Магнитосфера – область околоземного пространства, заполненная заряженными частицами, движущимися в магнитном поле Земли. Она отделена от межпланетного пространства магнитопаузой. Это внешняя граница магнитосферы.

В основе образования магнитного поля лежат внутренние и внешние причины. Постоянное магнитное поле образуется благодаря электрическим токам, возникающим во внешнем ядре планеты. Солнечные корпускулярные потоки образуют переменное магнитное поле Земли. Наглядное представление о состоянии магнитного поля Земли дают магнитные карты. Магнитные карты составляются на пятилетний срок – магнитную эпоху.

Нормальное магнитное поле было бы у Земли, будь она однородно намагниченным шаром. Земля в первом приближении представляет собой магнитный диполь – это стержень, концы которого имеют противоположные магнитные полюса. Места пересечения магнитной оси диполя с земной поверхностью называются геомагнитными полюсами . Геомагнитные полюсы не совпадают с географическими и медленно движутся со скоростью 7-8 км/год. Отклонения реального магнитного поля от нормального (теоретически рассчитанного) называются магнитными аномалиями. Они могут быть мировыми (Восточно-Сибирский овал), региональными (КМА) и локальными, связанными с близким залеганием к поверхности магнитных пород.

Магнитное поле характеризуется тремя величинами: магнитным склонением, магнитным наклонением и напряженностью. Магнитное склонение - угол между географическим меридианом и направлением магнитной стрелки. Склонение бывает восточным (+), если северный конец стрелки компаса отклоняется к востоку от географического, и западным (-), когда стрелка отклоняется к западу. Магнитное наклонение - угол между горизонтальной плоскостью и направлением магнитной стрелки, подвешенной на горизонтальной оси. Наклонение положительное, когда северный конец стрелки смотрит вниз, и отрицательное, если северный конец направлен вверх. Магнитное наклонение изменяется от 0 до 90 0 . Сила магнитного поля характеризуется напряженностью. Напряженность магнитного поля небольшая составляет на экваторе 20-28 А/м, на полюсе – 48-56 А/м.

Магнитосфера имеет каплевидную форму. На стороне, обращенной к Солнцу, ее радиус равен 10 радиусам Земли, на ночной стороне под влиянием «солнечного ветра» увеличивается до 100 радиусов. Форма обусловлена воздействием солнечного ветра, который, наталкиваясь на магнитосферу Земли, обтекает ее. Заряженные частицы, достигая магнитосферы, начинают двигаться по магнитным силовым линиям и образуют радиационные пояса. Внутренний радиационный пояс состоит из протонов, имеет максимальную концентрацию на высоте 3500 км над экватором. Внешний пояс образован электронами, простирается до 10 радиусов. У магнитных полюсов высота радиационных поясов уменьшается, здесь возникают области, в которых заряженные частицы вторгаются в атмосферу, ионизируя газы атмосферы и вызывая полярные сияния.

Географическое значение магнитосферы очень велико: она защищает Землю от корпускулярного солнечного и космического излучения. С магнитными аномалиями связан поиск полезных ископаемых. Магнитные силовые линии помогают ориентироваться в пространстве туристам, кораблям.

Возраст Земли. Геохронология.

Земля возникла как холодное тело из скопления твердых частиц и тел, подобных астероидам. Среди частиц были и радиоактивные. Попав внутрь Земли, они там распадались с выделением тепла. Пока размеры Земли были невелики, тепло легко уходило в межпланетное пространство. Но с нарастанием объема Земли производство радиоактивного тепла стало превышать его утечку, оно накапливалось и разогревало недра планеты, приводя их в размягченное. Пластическое состояние, которое и открыло возможности для гравитационной дифференциации вещества – всплывания более легких минеральных масс к поверхности и постепенного опускания более тяжелых – к центру. Интенсивность дифференциации с глубиной затухала, т.к. в этом же направлении в связи с увеличением давления возрастала вязкость вещества. Земное ядро не было захвачено дифференциацией, сохранило свой первозданный силикатный состав. Но резко уплотнилось из-за высочайшего давления, превысившего миллион атмосфер.

Возраст Земли устанавливается с помощью радиоактивного метода, применять его можно только к породам, содержащим радиоактивные элементы. Если считать, что весь аргон на Земле – продукт распада калия-49, то возраст Земли будет не менее 4 млрд. лет. Подсчеты О.Ю. Шмидта дают еще более высокую цифру – 7,6 млрд. лет. В.И. Баранов для исчисления возраста Земли взял отношение между современными количествами урана-238 и актиноурана (урана-235) в горных породах и минералах и получил возраст урана (вещества, из которого потом возникла планета) 5-7 млрд. лет.

Таким образом, возраст Земли определяется в интервале 4-6 млрд. лет. Историю развития земной поверхности удается пока непосредственно восстановить в общих чертах лишь начиная с тех времен, от которых сохранились древнейшие горные породы, т.е примерно за 3 – 3,5 млрд. лет (Калесник С.В.).

Историю Земли обычно делят на два эона: криптозой (скрытый и жизнь: нет останков скелетной фауны) и фанерозой (явный и жизнь). Криптозой включает две эры: архей и протерозой. Фанерозой охватывает последние 570 млн. лет, в нем выделяют палеозойскую, мезозойскую и кайнозойскую эры, которые, в свою очередь, делятся на периоды. Часто весь период до фанерозоя называют докембрием (кембрий – первый период палеозойской эры).

Периоды палеозойской эры:

Периоды мезозойской эры:

Периоды кайнозойской эры:

Палеоген (эпохи – палеоцен, эоцен, олигоцен)

Неоген (эпохи – миоцен, плиоцен)

Четвертичный (эпохи – плейстоцен и голоцен).

Выводы:

1.В основе всех проявлений внутренней жизни Земли лежат преобразования тепловой энергии.

2.В земной коре температура с удалением от поверхности возрастает (геотермический градиент).

3.Теплота Земли имеет своим источником распад радиоактивных элементов.

4.Плотность вещества Земли с глубиной увеличивается от 2,7 на поверхности до 17,2 в центральных частях. Давление в центре Земли достигает 3 млн. атм. Плотность увеличивается скачкообразно на глубинах 60 и 2900 км. Отсюда вывод – Земля состоит из объемлющих друг друга концентрических оболочек.

5.Земная кора слагается преимущественно породами типа гранитов, которые подстилаются породами типа базальтов. Возраст земли определяется в 4-6 млрд. лет.

Как часто в поисках ответов на свои вопросы, о том, как устроен мир, мы смотрим вверх на небо, солнце, звезды, заглядываем далеко-далеко за сотни световых лет в поисках новых галактик. А ведь, если посмотреть под ноги, то под ногами существует целый подземный мир из которого состоит наша планета - Земля!

Недра Земли это тот самый загадочный мир под ногами, подземный организм нашей Земли, на которой мы живем, строим дома, прокладываем дороги, мосты и многие тысячи лет осваиваем территории родной планеты.

Этот мир - тайные глубины недр Земли!

Строение Земли

Наша планета относится к планетам земной группы, и так же, как и другие планеты, состоит из слоёв. Поверхность Земли состоит из твердой оболочки земной коры, глубже находится крайне вязкая мантия, а в центре расположено металлическое ядро, которое состоит из двух частей, внешняя - жидкая, внутренняя - твердая.

Интересно, многие объекты Вселенной настолько хорошо изучены, что о них знает каждый школьник, в космос на далекие сотни тысяч километров отправляются космические аппараты, но в самые глубинные недра нашей планеты по прежнему забраться остается непосильной задачей, поэтому то что находится под поверхностью Земли по прежнему остается большой загадкой.