ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Частичное окисление алкенов с перманганатом калия упражнение. Окислительно-восстановительные реакции с участием органических веществ

Санкт-Петербургский Государственный Технологический Институт

(Технический Университет)

Кафедра органической химии Факультет 4

Группа 476

Курсовая работа

Окисление алкенов

Студентка………………………………………Рытина А.И.

Преподаватель………………………………... Питерская Ю.Л.

Санкт-Петербург

Введение

1.Эпоксидирование (реакция Н.А. Прилежаева,1909 г.)

2.Гидроксилирование

2.1анти -Гидроксилирование

2.2син -Гидроксилирование

3.Окислительное расщепление алкенов

4.Озонолиз

5.Окисление алкенов в присутствии солей палладия

Заключение

Список использованных источников

Введение

Окисление - одно из наиболее важных и распространенных превращений органических соединений.

Под окислением в органической химии понимают процессы, приводящие к обеднению соединения водородом или обогащению его кислородом. При этом происходит отнятие от молекулы электронов. Соответственно, под восстановлением понимают отрыв от органической молекулы кислорода или присоединение к ней водорода.

В окислительно-восстановительных реакциях окислителями являются соединения, обладающие большим сродством к электрону (электрофилы), а восстановителями – соединения, имеющие склонность к отдаче электронов (нуклеофилы). Легкость окисления соединения возрастает вместе с ростом его нуклеофильности.

При окислении органических соединений, как правило, полной передачи электронов и соответственно изменения валентности атомов углерода не происходит. Поэтому понятие степени окисления – условного заряда атома в молекуле, вычисленного, исходя из предположения, что молекула состоит только из ионов – носит лишь условный, формальный характер.

При составлении уравнений окислительно-восстановительных реакций необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя метод электронно-ионного баланса (метод полуреакций).

В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. Для уравнивания числа атомов кислорода и водорода вводят или молекулы воды и протоны (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная).

Таким образом, при написании полуреакций восстановления и окисления нужно исходить из состава ионов, действительно имеющихся в растворе. Вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

В качестве примера рассмотрим процесс окисления этилена разбавленным водным раствором перманганата калия (реакция Вагнера). В ходе данной реакции этилен окисляется до этиленгликоля, а перманганат калия восстанавливается до диоксида марганца. По месту двойной связи присоединяются два гидроксила :

3С 2 H 4 + 2KMnO 4 +4H 2 O→ 3C 2 H 6 O 2 + 2MnO 2 +2KOH

Полуреакция восстановления: MnO 4 ¯ + 2H 2 O + 3 e → MnO 2 + 4OH ¯ 2

Полуреакция окисления: С 2 H 4 + 2OH − − 2 e C 2 H 6 O 2 3

Окончательно имеем в ионном виде:

2MnO 4 ¯ + 4H 2 O + 3C 2 H 4 + 6OH ¯ → 2MnO 2 + 8OH ¯ + 3C 2 H 6 O 2

После проведения необходимых сокращений подобных членов, записываем уравнение в молекулярном виде:

3C 2 H 4 + 2KMnO 4 + 4 H 2 O = 3C 2 H 6 O 2 + 2MnO 2 + 2KOH.

Характеристика некоторых окислителей

Кислород

Кислород воздуха находит широкое применение в технологических процессах, так как является наиболее дешевым окислителем. Но окисление кислородом воздуха сопряжено с трудностями, связанными с контролем процесса, который протекает в различных направлениях. Окисление обычно проводят при высокой температуре в присутствии катализаторов.

Озон

Озон O 3 применяют для получения альдегидов и кетонов, если их затруднительно получить другими способами. Чаще всего озон применяют для установления структуры ненасыщенных соединений. Получают озон при действии тихого электрического разряда на кислород. Одним из существенных достоинств озонирования, по сравнению с хлорированием, является отсутствие токсинов после обработки .

Перманганат калия

Перманганат калия – наиболее часто применяемый окислитель. Реактив растворим в воде (6.0% при 20ºС), а также в метаноле, ацетоне и уксусной кислоте. Для окисления применяют водные (иногда ацетоновые) растворы KMnO 4 в нейтральной, кислой или щелочной среде. При проведении процесса в нейтральной среде в реакционную массу добавляют соли магния, алюминия или пропускают углекислый газ для нейтрализации выделяющегося во время реакции гидроксида калия. Реакцию окисления KMnO 4 в кислой среде чаще всего ведут в присутствии серной кислоты. Щелочную среду при окислении создает образующийся во время реакции KOH, либо его изначально добавляют в реакционную массу. В слабощелочной и нейтральной средах KMnO 4 окисляет по уравнению:

KMnO 4 + 3 e + 2H 2 O = K + + MnO 2 + 4OH ¯

в кислой среде:

KMnO 4 + 5 e + 8H + = K + + Mn 2+ + 4H 2 O

Перманганат калия используется для получения 1,2-диолов из алкенов, при окислении первичных спиртов, альдегидов и алкиларенов до карбоновых кислот, а также для окислительного расщепления углеродного скелета по кратным связям.

На практике обычно используется довольно большой избыток (более чем 100%) KMnO 4 . Это объясняется тем, что в обычных условиях KMnO 4 частично разлагается на диоксид марганца с выделением O 2 . Разлагается концентрированной H 2 SO 4 при нагревании в присутствии восстановителей со взрывом; смеси калия перманганата с органическими веществами также взрывчаты .

Надкислоты

Перуксусную и пермуравьиную кислоты получают реакцией 25-90%-ного пероксида водорода с соответствующей карбоновой кислотой по следующей реакции:

RCOOH + H 2 O 2 = RCOOOH + H 2 O

В случае уксусной кислоты это равновесие устанавливается относительно медленно, и для ускорения образования перкислоты обычно в качестве катализатора добавляют серную кислоту. Муравьиная кислота достаточно сильна сама по себе для того, чтобы обеспечить быстрое установление равновесия.

Пертрифторуксусная кислота, получаемая в смеси с трифторуксусной кислотой реакцией трифторуксусного ангидрида с 90%-ным пероксидом водорода, еще более сильный окислитель. Аналогичным образом из уксусного ангидрида и пероксида водорода можно получить перуксусную кислоту.

Особой популярностью пользуется твердая м -хлорпербензойная кислота, поскольку она относительно безопасна в обращении, достаточно стабильна и может храниться длительное время.

Окисление происходит за счет выделяющегося атома кислорода:

RCOOOH = RCOOH + [O]

Надкислоты применяют для получения эпоксидов из алкенов, а также лактонов из алициклических кетонов.

Пероксид водорода

Пероксид водорода – бесцветная жидкость,cмешивается с водой, этанолом и диэтиловым эфиром. 30%-ный раствор H 2 O 2 называется пергидролем. Высококонцентрированный препарат может реагировать с органическими веществами со взрывом. При хранении разлагается на кислород и воду. Стойкость пероксида водорода возрастает с разбавлением. Для окисления применяют водные растворы различной концентрации (от 3 до 90%) в нейтральной, кислой или щелочной средах.

H 2 O 2 = H 2 O + [O]

Действием этого реагента на α,β-непредельные карбонильные соединения в щелочной среде получают соответствующие эпоксиальдегиды и кетоны, окислением карбоновых кислот в кислой среде синтезируют надкислоты. 30%-ный раствор H 2 O 2 в уксусной кислоте окисляет алкены в 1,2-диолы. Пероксид водорода применяют: для получения органических и неорганических пероксидов, пербората и перкарбоната Na; как окислитель в ракетных топливах; при получении эпоксидов, гидрохинона, пирокатехина, этиленгликоля, глицерина, ускорителей вулканизации группы тиурама и др.; для отбеливания масел, жиров, меха, кожи, текстильных материалов, бумаги; для очистки германиевых и кремниевых полупроводниковых материалов; как дезинфицирующее средство для обезвреживания бытовых и индустриальных сточных вод; в медицине; как источник О 2 в подводных лодках; Н 2 О 2 входит в состав реактива Фентона (Fe 2 + + Н 2 О 2), который используют как источник свободных радикалов ОН в органическом синтезе .

Тетраоксиды рутения и осмия

Тетраоксид осмия OsO 4 – порошок от белого до бледно-желтого цвета с т. пл. 40.6ºС; т. кип. 131.2ºС. Возгоняется уже при комнатной температуре, растворим в воде (7.47 г в 100 мл при 25ºС), ССl 4 (250 г в 100 г растворителя при 20ºС). В присутствии органических соединений чернеет вследствие восстановления до OsO 2 .

RuO 4 представляет собой золотисто-желтые призмы с т. пл. 25.4ºС, заметно возгоняется при комнатной температуре. Умеренно растворим в воде (2.03 г в 100 мл при 20ºС), очень хорошо растворим в CCl 4 . Более сильный окислитель, чем OsO 4 . Выше 100ºС взрывается. Как и тетраоксид осмия обладает большой токсичностью и высокой стоимостью.

Данные окислители применяются для окисления алкенов в α-гликоли в мягких условиях.

Описание презентации ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕ ЛЬНЫЕ РЕАКЦИИ С УЧАСТИЕМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ по слайдам

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕ ЛЬНЫЕ РЕАКЦИИ С УЧАСТИЕМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ Кочулева Л. Р. , учитель химии МОБУ «Лицей № 9» г. Оренбурга

В органической химии окисление определяют как процесс, при котором в результате превращения функциональной группы соединение переходит из одной категории в более высокую: алкен спирт альдегид (кетон) карбоновая кислота. Большинство реакций окисления включает введение в молекулу атома кислорода или образование двойной связи с уже имеющимся атомом кислорода за счет потери атомов водорода.

ОКИСЛИТЕЛИ Для окисления органических веществ обычно используют соединения переходных металлов, кислород, озон, пероксиды и соединения серы, селена, иода, азота и другие. Из окислителей на основе переходных металлов преимущественно применяют соединения хрома (VI) и марганца (VII), (VI) и (IV). Наиболее распространенные соединения хрома (VI) – это раствор дихромата калия K 2 Cr 2 O 7 в серной кислоте, раствор триоксида хрома Cr. O 3 в разбавленной серной кислоте.

ОКИСЛИТЕЛИ При окислении органических веществ хром (VI) в любой среде восстанавливается до хрома (III), однако, окисление в щелочной среде в органической химии не находит практического применения. Перманганат калия KMn. O 4 в разных средах проявляет различные окислительные свойства, при этом сила окислителя увеличивается в кислой среде. Манганат калия K 2 Mn. O 4 и оксид марганца (IV) Mn. O 2 проявляют окислительные свойства только в кислой среде

АЛКЕНЫ В зависимости от природы окислителя и условий реакции образуются различные продукты: двухатомные спирты, альдегиды, кетоны, карбоновые кислоты При окислении водным растворoм KMn. O 4 при комнатной температуре происходит разрыв π-связи и образуются двухатомные спирты (реакция Вагнера): Обесцвечивание раствора перманганата калия — качественная реакция на кратную связь

АЛКЕНЫ Окисление алкенов концентрированным раствором перманганата калия KMn. O 4 или дихромата калия K 2 Cr 2 O 7 в кислой среде сопровождается разрывом не только π-, но и σ-связи Продукты реакции – карбоновые кислоты и кетоны (в зависимости от строения алкена) С помощью этой реакции по продуктам окисления алкена можно определить положение двойной связи в его молекуле:

АЛКЕНЫ 5 СН 3 –СН=СН-СН 3 +8 KMn. O 4 +12 H 2 SO 4 → 10 CH 3 COOH +8 Mn. SO 4+4 K 2 SO 4+12 H 2 O 5 СН 3 –СН=СН-CH 2 -СН 3 +8 KMn. O 4 +12 H 2 SO 4 → 5 CH 3 COOH +5 CH 3 CH 2 COOH +8 Mn. SO 4 +4 K 2 SO 4 +12 H 2 O CH 3 -CH 2 -CH=CH 2 +2 KMn. O 4 +3 H 2 SO 4 → CH 3 CH 2 COOH +CO 2 +2 Mn. SO 4 +K 2 SO 4 +4 H 2 O

АЛКЕНЫ Алкены разветвленного строения, содержащие углеводородный радикал у атома углерода, соединенного двойной связью, при окислении образуют смесь карбоновой кислоты и кетона:

АЛКЕНЫ 5 CH 3 -CH=C-CH 3 + 6 KMn. O 4 +9 H 2 SO 4 → │ CH 3 5 CH 3 COOH + 5 O=C-CH 3 + 6 Mn. SO 4 + 3 K 2 SO 4+ │ CH 3 9 H 2 O

АЛКЕНЫ Алкены разветвленного строения, содержащие углеводородные радикалы у обоих атомов углерода, соединенных двойной связью, при окислении образуют смесь кетонов:

АЛКЕНЫ 5 CH 3 -C=C-CH 3 + 4 KMn. O 4 +6 H 2 SO 4 → │ │ CH 3 10 O=C-CH 3 + 4 Mn. SO 4 + 2 K 2 SO 4+6 H 2 O │ CH

АЛКЕНЫ В результате каталитического окисления алкенов кислородом воздуха получают эпоксиды: В жестких условиях при сжигании на воздухе алкены, как и другие углеводороды, сгорают с образованием углекислого газа и воды: С 2 Н 4 + 3 О 2 → 2 СО 2 + 2 Н 2 О

АЛКАДИЕНЫ CH 2 =CH−CH=CH 2 В окисляемой молекуле две концевых двойных связи, следовательно, образуются две молекулы углекислого газа. Углеродный скелет не разветвленный, поэтому при окислении 2 -го и 3 -го углеродных атомов образуются карбоксильные группы CH 2 =CH−CH=CH 2 + 4 KMn. O 4 + 6 H 2 SO 4 → 2 СО 2 + НСОО−СООН + 4 Mn. SO 4 +2 K 2 SO 4 + 8 Н 2 О

АЛКИНЫ Алкины легко окисляются перманганатом калия и дихроматом калия по месту кратной связи При действии на алкины водным раствором KMn. O 4 происходит его обесцвечивание (качественная реакция на кратную связь) При взаимодействии ацетилена с водным раствором перманганата калия образуется соль щавелевой кислоты (оксалат калия):

АЛКИНЫ Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия: 3 CH≡CH +8 KMn. O 4 → 3 KOOC – COOK +8 Mn. O 2 +2 КОН +2 Н 2 О В кислотной среде окисление идет до щавелевой кислоты или углекислого газа: 5 CH≡CH +8 KMn. O 4 +12 H 2 SO 4 → 5 HOOC – COOH +8 Mn. SO 4 +4 К 2 SO 4 +12 Н 2 О CH≡CH + 2 KMn. O 4 +3 H 2 SO 4 =2 CO 2 + 2 Mn. SO 4 + 4 H 2 O + K 2 SO

АЛКИНЫ Окисление перманганатам калия в кислой среде при нагревании сопровождается разрывом углеродной цепи по месту тройной связи и приводит к образованию кислот: Окисление алкинов, содержащих тройную связь у крайнего атома углерода, сопровождается в этих условиях образованием карбоновой кислоты и СО 2:

АЛКИНЫ CH 3 C≡CCH 2 CH 3 + K 2 Cr 2 O 7 + 4 H 2 SO 4→CH 3 COOH+CH 3 CH 2 COOH + Cr 2(SO 4)3+K 2 SO 4+3 H 2 O 3 CH 3 C≡CH+4 K 2 Cr 2 O 7 +16 H 2 SO 4 →CH 3 COOH+3 CO 2++ 4 Cr 2(SO 4)3 + 4 K 2 SO 4 +16 H 2 O CH 3 C≡CH+8 KMn. O 4+11 KOH →CH 3 COOK +K 2 CO 3 + 8 K 2 Mn. O 4 +6 H 2 O

ЦИКЛОАЛКАНЫ И ЦИКЛОАЛКЕНЫ При действии сильных окислителей (KMn. O 4 , K 2 Cr 2 O 7 и др.) циклоалканы и циклоалкены образуют двухосновные карбоновые кислоты с тем же числом атомов углерода: 5 C 6 H 12 + 8 KMn. O 4 + 12 H 2 SO 4 → 5 HOOC(CH 2) 4 COOH + 4 K 2 SO 4 + 8 Mn. SO 4 +12 H 2 O

АРЕНЫ Бензол Устойчив к окислителям при комнатной температуре Не реагирует с водными растворами перманганата калия, дихромата калия и других окислителей Можно окислить озоном с образованием диальдегида:

АРЕНЫ Гомологи бензола Окисляются относительно легко. Окислению подвергается боковая цепь, у толуола – метильная группа. Мягкие окислители (Mn. O 2) окисляют метильную группу до альдегидной группы: C 6 H 5 CH 3+2 Mn. O 2+H 2 SO 4→C 6 H 5 CHO+2 Mn. SO 4+3 H 2 O

АРЕНЫ Более сильные окислители – KMn. O 4 в кислой среде или хромовая смесь при нагревании окисляют метильную группу до карбоксильной: В нейтральной или слабощелочной среде образуется не сама бензойная кислота, а ее соль — бензоат калия:

АРЕНЫ В кислой среде 5 С 6 Н 5 СН 3 +6 КMn. O 4 +9 H 2 SO 4 → 5 С 6 Н 5 СООН+6 Mn. SO 4 +3 K 2 SO 4 + 14 H 2 O В нейтральной среде C 6 H 5 CH 3 +2 KMn. O 4 = C 6 H 5 COOK + 2 Mn. O 2 + KOH + H 2 O В щелочной среде C 6 H 5 CH 2 CH 3 + 4 KMn. O 4 = C 6 H 5 COOK + K 2 CO 3 + 2 H 2 O + 4 Mn. O 2 + KOH

АРЕНЫ Под действием сильных окислителей (KMn. O 4 в кислой среде или хромовая смесь) боковые цепи окисляются независимо от строения: атом углерода, непосредственно связанный с бензольным ядром, до карбоксильной группы, остальные атомы углерода в боковой цепи — до СО 2 Окисление любого гомолога бензола с одной боковой цепью под действием KMn. O 4 в кислой среде или хромовой смеси приводит к образованию бензойной кислоты:

АРЕНЫ Гомологи бензола, содержащие несколько боковых цепей, при окислении образуют соответствующие многоосновные ароматические кислоты:

АРЕНЫ В нейтральной или слабощелочной среде при окислении перманганатом калия образуются соль карбоновой кислоты и карбонат калия:

АРЕНЫ 5 C 6 H 5 -C 2 H 5 + 12 KMn. O 4 + 18 H 2 SO 4 -> 5 C 6 H 5 -COOH + 5 CO 2 + 12 Mn. SO 4 + 6 K 2 SO 4 + 28 H 2 O C 6 H 5 -C 2 H 5 +4 KMn. O 4→ C 6 H 5 -COOК +К 2 СО 3 +КОН +4 Mn. O 2 +2 H 2 O 5 C 6 H 5 -CH(CH 3)2 + 18 KMn. O 4 + 27 H 2 SO 4 —-> 5 C 6 H 5 -COOH + 10 CO 2 + 18 Mn. SO 4 + 9 K 2 SO 4 + 42 H 2 O 5 CH 3 -C 6 H 4 -CH 3 +12 KMn. O 4 +18 H 2 SO 4 → 5 C 6 H 4(COOН)2 +12 Mn. SO 4 +6 K 2 SO 4 + 28 H 2 O CH 3 -C 6 H 4 -CH 3 + 4 KMn. O 4 → C 6 H 4(COOK)2 +4 Mn. O 2 +2 KOH+2 H 2 O

СТИРОЛ Окисление стирола (винилбензола) раствором перманганата калия в кислой и нейтральной среде: 3 C 6 H 5 −CH═CH 2 + 2 KMn. O 4 + 4 H 2 O → 3 C 6 H 5 −CH−CH 2 + 2 Mn. O 2 + 2 KOH ı ı OH OH Окисление сильным окислителем — перманганатом калия в кислой среде — приводит к полному разрыву двойной связи и об разованию углекислого газа и бензойной кислоты, раствор при этом обесцвечивается. C 6 H 5 −CH═CH 2 + 2 KMn. O 4 + 3 H 2 SO 4 → C 6 H 5 −COOH + CO 2 + K 2 SO 4 + 2 Mn. SO 4 +4 H 2 O

СПИРТЫ Наиболее подходящие окислители для первичных и вторичных спиртов: KMn. O 4 , хромовая смесь. Первичные спирты, кроме метанола, окисляются до альдегидов или карбоновых кислот:

СПИРТЫ Метанол окисляется до СО 2: Этанол под действием Cl 2 окисляется до уксусного альдегида: Вторичные спирты окисляются до кетонов:

СПИРТЫ Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMn. O 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия. 5 СН 2 (ОН) – СН 2 (ОН) + 8 КMn. O 4 +12 H 2 SO 4 → 5 HOOC – COOH +8 Mn. SO 4 +4 К 2 SO 4 +22 Н 2 О 3 СН 2 (ОН) – СН 2 (ОН) + 8 КMn. O 4 → 3 KOOC – COOK +8 Mn. O 2 +2 КОН +8 Н 2 О

ФЕНОЛЫ Окисляются легко благодаря наличию гидроксогруппы, соединенной с бензольным кольцом Фенол окисляется пероксидом водорода в присутствии катализатора до двухатомного фенола пирокатехина, при окислении хромовой смесью – до пара -бензохинона:

АЛЬДЕГИДЫ И КЕТОНЫ Альдегиды окисляются легко, при этом альдегидная группа окисляется до карбоксильной: 3 CH 3 СHO + 2 KMn. O 4 + 3 H 2 O → 2 CH 3 COOK+ CH 3 COOH+ 2 Mn. O 2 + H 2 O 3 CH 3 CH=O + K 2 Cr 2 O 7 + 4 H 2 SO 4 = 3 CH 3 COOH + Cr 2 (SO 4) 3 + 7 H 2 O Метаналь окисляется до CО 2:

АЛЬДЕГИДЫ И КЕТОНЫ Качественные реакции на альдегиды: окисление гидроксидом меди(II) реакция «серебряного зеркала» Соль, а не кислота!

АЛЬДЕГИДЫ И КЕТОНЫ Кетоны окисляются с трудом, слабые окислители на них не действуют Под действием сильных окислителей происходит разрыв С — С связей по обе стороны карбонильной группы с образованием смеси кислот (или кетонов) с меньшим числом атомов углерода, чем в исходном соединении:

АЛЬДЕГИДЫ И КЕТОНЫ В случае несимметричного строения кетона окисление преимущественно осуществляется со стороны менее гидрированного атома углерода при карбонильной группе (правило Попова – Вагнера) По продуктам окисления кетона можно установить его строение:

МУРАВЬИНАЯ КИСЛОТА Среди предельных одноосновных кислот легко окисляется только муравьиная кислота. Это связано с тем, что в муравьиной кислоте кроме карбоксильной группы можно выделить и альдегидную группу. 5 НСООН + 2 KMn. O 4 + 3 H 2 SO 4 → 2 Mn. SO 4 + K 2 SO 4 + 5 СО 2 + 8 Н 2 О Муравьиная кислота реагирует с аммиачным раствором оксида серебра и гидроксидом меди (II) HCOOH + 2OH → 2 Ag + (NH 4)2 CO 3 + 2 NH 3 + H 2 O HCOOH + 2 Cu(OH) 2 CO 2 + Cu 2 O↓+ 3 H 2 O Кроме того, муравьиная кислота окисляется хлором: НСООН + Сl 2 → СО 2 + 2 HCl

НЕПРЕДЕЛЬНЫЕ КАРБОНОВЫЕ КИСЛОТЫ Легко окисляются водным раствором KMn. O 4 в слабощелочной среде с образованием дигидрооксикислот и их солей: В кислой среде происходит разрыв углеродного скелета по месту двойной связи С=С с образованием смеси кислот:

ЩАВЕЛЕВАЯ КИСЛОТА Легко окисляется под действием KMn. O 4 в кислой среде при нагревании до CО 2 (метод перманганатометрии): При нагревании подвергается декарбоксилированию (реакция диспропорционирования): В присутствии концентрированной H 2 SO 4 при нагревании щавелевая кислота и ее соли (оксалаты) диспропорционируют:

Записываем уравнения реакций: 1) CH 3 CH 2 CH 2 CH 3 2) 3) 4) 5) 16, 32 % (36, 68 %, 23, 82 %)Pt, to X 3 X 2 Pt, to. KMn. O 4 KOH X 4 гептан KOH, to бензол. X 1 Fe, HCl. HNO 3 H 2 SO 4 CH 3 + 4 H 2 CH 3 + 6 KMn. O 4 + 7 KOHCOOK + 6 K 2 Mn. O 4 + 5 H 2 O COOK + KOH+ K 2 CO 3 to NO 2 + H 2 O+ HNO 3 H 2 SO 4 N H 3 C l + 3 F e C l 2 + 2 H 2 ON O 2 + 3 F e + 7 H C l

Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная. Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделены цветом):

В случае (а) цепь имеет 1 заместитель, а в (б) – 2. Поэтому следует выбрать вариант (б).

1.Пронумеровать атомы углерода в главной цепи так, чтобы атомы С, связанные с заместителями, получили возможно меньшие номера. Поэтому нумерацию начинают с ближайшего к ответвлению конца цепи. Например:

    Назвать все радикалы (заместители), указав впереди цифры, обозначающие их местоположение в главной цепи. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставками ди -, три -, тетра -, пента - и т.д. (например, 2,2-диметил или2,3,3,5-тетраметил ).

    Названия всех заместителей расположить в алфавитном порядке (так установлено последними правилами ИЮПАК).

    Назвать главную цепь углеродных атомов, т.е. соответствующий нормальный алкан.

Таким образом, в названии разветвленного алкана корень+суффикс – название нормального алкана (греч. числительное+суффикс "ан"), приставки – цифры и названия углеводородных радикалов. Пример построения названия:

Хим. Св-ва алканов Крекинг алканов. Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. Изомеризация алканов Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100С в присутствии катализатора хлорида алюминия:

Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).

Дегидрирование алканов

При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr 2 O 3 , Fe 2 O 3 , ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С-Н.

Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.

1.Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород от соседних углеродных атомов и превращаются в алкены :

Наряду с бутеном-2 в этой реакции образуется бутен-1 CH 2 =CH-CH 2 -CH 3 . В присутствии катализатора Cr 2 O 3 /Al 2 O 3 при 450-650 С из н -бутана получают также бутадиен-1,3 CH 2 =CH-CH=CH 2 .

2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений. При этом происходит дегидроциклизация – реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

Если основная цепь молекулы алкана содержит 5 (но не более) атомов углерода (н -пентан и его алкильные производные), то при нагревании над Pt-катализатором атомы водорода отщепляются от концевых атомов углеродной цепи, и образуется пятичленный цикл (циклопентан или его производные):

    Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена). Например:

Эти реакции лежат в основе процесса риформинга – переработки нефтепродуктов с целью получения аренов (ароматизация предельных углеводородов) и водорода. Превращение н- алканов в арены ведет к улучшению детонационной стойкости бензина.

4.5. Окисление алкенов

Реакции окисления алкенов целесообразно подразделить на две большие группы: реакции, в которых сохраняется углеродный скелет и реакции окислительной деструкции углеродного скелета молекулы по двойной связи. К первой группе реакций относятся эпоксидирование, а также гидроксилирование, приводящее к образованию вицинальных диолов (гликолей). В случае циклических алкенов при гидроксилировании образуются вицинальные транс - или цис -диолы. Другая группа включает озонолиз и реакции исчерпывающего окисления алкенов, приводящие к образованию различного рода карбонильных соединений и карбоновых кислот.

4.5.а. Реакции окисления алкенов с сохранением углеродного скелета

1. Эпоксидирование (реакция Н.А. Прилежаева, 1909 г)

Ациклические и циклические алкены при взаимодействии с перкислотами (надкислотами) RCOOOH в неполярной, индифферентной среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Согласно современной номенклатуре ИЮПАК - трехчленный цикл с одним атомом кислорода носит название оксиран.

Эпоксидирование алкенов следует рассматривать как синхронный, согласованный процесс, в котором не участвуют ионные интермедиаты типа гидроксильного катиона ОН+ . Другими словами, эпоксидирование алкенов представляет собой процесс син -присоединения одного атома кислорода по двойной связи с полным сохранением конфигурации заместителей при двойной связи.

Для эпоксидирования был предложен механизм, характерный для согласованных процессов.

Т. к. атака двойной связи атомом кислорода надкислоты равновероятна с обеих сторон плоскости двойной связи, образующиеся оксираны представляют собой либо мезо -формы, либо смеси энантиомеров. В качестве эпоксидирующих агентов используются следующие перкислоты: пербензойная, м -хлорпербензойная, моноперфталевая, перуксусная, трифторперуксусная и пермуравьиная. Перкислоты ароматического ряда применяют в виде индивидуальных реагентов, тогда как перкислоты алифатического ряда - СН 3 СО 3 Н, CF 3 CO 3 H и НСО 3 Н не выделяют в индивидуальном виде, а используют после их образования при взаимодействии 30% или 90%-ного пероксида водорода и соответствующей карбоновой кислоты. Пербензойную и м -хлорпербензойную кислоты получают окислением соответственно бензойной и м -хлорбензойной кислот 70%-ной перекисью водорода в растворе метансульфокислоты или из хлорангидридов этих кислот и перекиси водорода.

Моноперфталевую кислоту получают подобным методом из фталевого ангидрида и 30%-ной перекиси водорода.

Первоначально для получения оксиранов (эпоксидов) использовались пербензойная или моноперфталевая кислоты:

В настоящее время для эпоксидирования чаще всего используют м -хлорпербензойную кислоту. В отличие от других перкислот она стабильна при хранении в течение длительного времени (до 1 года) и абсолютно безопасна при обращении. Выходы оксиранов, полученных при окислении ациклических и циклических алкенов м -хлорпербензойной кислотой в растворе хлористого метилена, хлороформа или диоксана, обычно довольно высоки.

Перкислоты часто генерируют прямо в реакционной смеси из 90% перекиси водорода и карбоновой кислоты в хлористом метилене.

Алкены с двойной связью, сопряженной с карбонильной группой или другим акцепторным заместителем, малоактивны и для их окисления лучше использовать более сильные окислители, такие как трифторперуксусная кислота, получаемая из ангидрида трифторуксусной кислоты и 90%-ной перекиси водорода в хлористом метилене. Простейший оксиран - окись этилена получают в промышленности окислением этилена кислородом в присутствии серебра, как катализатора.

2. анти -Гидроксилирование

Трехчленное кольцо оксиранов легко раскрывается под действием самых разнообразных нуклеофильных реагентов. Эти реакции подробно будут обсуждаться в разделе, посвященном ациклическим и циклическим простым эфирам. Здесь же будет рассматриваться только гидролиз оксиранов. Гидролиз оксиранов катализируется как кислотами, так и основаниями. В обоих случаях образуются вицинальные диолы, т. е. гликоли. При кислотном катализе в первой стадии происходит протонирование атома кислорода оксирана с образованием циклического оксониевого катиона, который раскрывается в результате нуклеофильной атаки молекулы воды:

Ключевой стадией в раскрытии кольца, определяющей скорость всего процесса, является нуклеофильная атака водой на протонированную форму оксирана. С точки зрения механизма этот процесс аналогичен раскрытию бромониевого иона при нуклеофильной атаке бромид-иона или другого нуклеофильного агента. С этих позиций стереохимическим результатом должно быть образование транс -гликолей при расщеплении циклических эпоксидов. Действительно, при кислотно-катализируемом гидролизе циклогексеноксида или циклопентеноксида образуются исключительно транс -1,2-диолы.

Таким образом, двухстадийный процесс эпоксидирования алкена с последующим кислотным гидролизом эпоксида суммарно соответствует реакции анти -гидроксилирования алкенов.

Обе стадии анти -гидроксилирования алкенов можно совместить, если алкен обрабатывать водной 30-70%-ной перекисью водорода в муравьиной или трифторуксусной кислоте. Обе эти кислоты являются достаточно сильными для того, чтобы вызвать раскрытие оксиранового цикла.

Раскрытие оксиранового кольца, катализируемое основанием, также приводит к образованию циклических транс -гликолей.

Следовательно, двухстадийный процесс эпоксидирования алкенов с последующим щелочным гидролизом эпоксидов также является реакцией анти -гидроксилирования алкенов.

3. син -Гидроксилирование

Некоторые соли и оксиды переходных металлов в высших степенях окисления являются эффективными реагентами син -гидроксилирования двойной связи алкена, когда обе гидроксильные группы присоединяются с одной и той же стороны двойной связи. Окисление алкенов перманганатом калия - один из старейших методов син -гидроксилирования двойной связи - продолжает широко использоваться, несмотря на свойственные ему ограничения. Цис -1,2-циклогександиол был впервые получен В.В. Марковниковым в 1878 году гидроксилированием циклогексена водным раствором перманганата калия при 0 0 С.

Этот метод в дальнейшем получил развитие в работах русского ученого Е.Е. Вагнера, поэтому син -гидроксилирование алкенов под действием водного раствора перманганата калия носит название реакции Вагнера. Перманганат калия является сильным окислителем, способным не только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол. Для того, чтобы по возможности избежать дальнейшего расщепления гликолей, необходимо тщательно контролировать условия реакции. Выходы гликолей при этом обычно невелики (30-60%). Наилучшие результаты достигаются при гидроксилировании алкенов в слабощелочной среде (рН~8 9) при 0-5 0 С разбавленным 1%-ным водным раствором KMnO 4 .

Первоначально при окислении алкенов перманганатом калия образуется циклический эфир марганцевой кислоты, который немедленно гидролизуется до вицинального диола.

Циклический эфир марганцевой кислоты как интермедиат не был выделен, однако его образование следует из экспериментов с меченым 18 О перманганатом калия: оба атома кислорода в гликоле оказываются мечеными при окислении алкена KMn 18 O 4 . Это означает, что оба атома кислорода переходят от окислителя, а не из растворителя - воды, что находится в хорошем соответствии с предлагаемым механизмом.

Другой метод син -гидроксилирования алкенов под действием оксида осмия (VIII) OsO 4 был предложен Р. Криге в 1936 году. Тетраоксид осмия представляет собой бесцветное, летучее, кристаллическое вещество, хорошо растворимое в эфире, диоксане, пиридине и др. органических растворителях. При взаимодействии тетраоксида осмия с алкенами в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты - осмат, который легко может быть изолирован в индивидуальном виде. Присоединение OsO 4 к двойной связи заметно ускоряется в растворе в пиридине. Разложение осматов до вицинальных гликолей достигается действием водного раствора гидросульфита натрия или сероводородом.

Выходы продуктов син -гидроксилирования алкенов в этом методе значительно выше, чем при использовании перманганата в качестве окислителя. Важным достоинством метода Криге является отсутствие продуктов окислительного расщепления алкенов, характерного для перманганатного окисления.

Тетраоксид осмия очень дорогой и труднодоступный реагент, к тому же он токсичен. Поэтому оксид осмия (VIII) используется при синтезе малых количеств трудно доступных веществ с целью получения наиболее высокого выхода диола. С целью упрощения син -гидроксилирования алкенов под действием OsO 4 была разработана методика, позволяющая использовать лишь каталитические количества этого реагента. Гидроксилирование алкенов осуществляется с помощью перекиси водорода в присутствии OsO 4 , например:

В заключение этого раздела приведем стереохимические отношения между алкеном цис - или транс -конфигурации и конфигурацией образующегося вицинального диола, который может быть цис - или транс -изомером, эритро - или трео -формой, мезо - или D,L -формой в зависимости от заместителей в алкене:

Аналогичные стереохимические отношения наблюдаются и в других реакциях син - или анти -присоединения по кратной связи водорода, галогенводородов, воды, галогенов, гидридов бора и др. реагентов.

Склонность органических соединений к окислению связывают с наличием кратных связей, функциональных групп, атомов водорода при атоме углерода, содержащем функциональную группу. Последовательное окисление органических веществ можно представить в виде следующей цепочки превращений:

Насыщенный углеводород→ Ненасыщенный углеводород → Спирт→ Альдегид (кетон) → Карбоновая кислота →CO2 + H2O

Генетическая связь между классами органических соединений представляется здесь как ряд окислительно – восстановительных реакций, обеспечивающих переход от одного класса органических соединений к другому. Завершают его продукты полного окисления (горения) любого из представителей классов органических соединений. Зависимость окислительно-восстановительной способности органического вещества от его строения: Повышенная склонность органических соединений к окислению обусловлена наличием в молекуле веществ: кратных связей (именно поэтому так легко окисляются алкены, алкины, алкадиены); определенных функциональных групп, способных легко окисляться (–-SH, –OH (фенольной и спиртовой), – NH2 ; активированных алкильных групп, расположенных по соседству с кратными связями.

Например, пропен может быть окислен до непредельного альдегида акролеина кислородом воздуха в присутствии водяных паров на висмут- молибденовых катализаторах.

H2C═CH−CH3 → H2C═CH−COH

А также окисление толуола до бензойной кислоты перманганатом калия в кислой среде. 5C6H5CH3 +6KMnO4 + 9H2SO4 → 5C6H5COOH + 3K2SO4 + 6MnSO4 +14H2O

наличие атомов водорода при атоме углерода, содержащем функциональную группу. Примером является реакционная способность в реакциях окисления первичных, вторичных и третичных спиртов по реакционной способности к окислению.

Несмотря на то, что в ходе любых окислительно-восстановительных реакций происходит как окисление, так и восстановление, реакции классифицируют в зависимости от того, что происходит непосредственно с органическим соединением (если оно окисляется, говорят о процессе окисления, если восстанавливается – о процессе восстановления).

Так, в реакции этилена с перманганатом калия этилен будет окисляться, а перманганат калия – восстанавливается. Реакцию называют окислением этилена.

При изучении сравнительной характеристики неорганических и органических соединений мы знакомились с использованием степени окисления (с.о.) (в органической химии, прежде всего углерода) и способами ее определения:

1) вычисление средней с.о. углерода в молекуле органического вещества: -8/3 +1 С3 H8 Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).



2) определение с.о. каждого атома углерода:

В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+» у атома углерода, и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-» у атома углерода. При этом связи с соседними атомами углерода не учитывают. В качестве простейшего примера определим степень окисления углерода в молекуле метанола. Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « – »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем: -3 + 1 = -2.Таким образом, степень окисления углерода в метаноле равна -2. Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе. Уточняем, в каких случаях лучше использовать тот или иной способ.

Процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам. При переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется. Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы. Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы. Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя, подобно тому, как это присуще неорганическим веществам.

Алканы

Алкены

Процессы окисления зависят от строения алкена и среды протекания реакции.

1.При окислении алкенов концентрированным раствором перманганата калия KMnO4 в кислой среде (жесткое окисление) происходит разрыв σ- и π-связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

а) Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

б) Если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона, т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

в) Если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

2.В нейтральной или слабощелочной средах окисление сопровождается образованием диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены (реакция Вагнера).

3. Окисление алкенов в присутствии солей палладия (Вакер-процесс) приводит к образованию альдегидов и кетонов:

2CH2=CH2 + O2 PdCl2/H2O → 2 CH3-CO-H

Гомологи окисляются по менее гидрированному атому углерода: СH3-CH2-CH=CH2 + 1/2O2 PdCl2/H2O → CH3- CH2-CO-CH3 Алкины

Окисление ацетилена и его гомологов протекает в зависимости от того, в какой среде протекает процесс.

а) В кислой среде процесс окисления сопровождается образованием карбоновых кислот:

1 Реакция используется для определения строения алкинов по продуктам окисления:

2 В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

3 Для ацетилена:

1) В кислой среде: H-C≡C-H KMnO4, H2SO4→ HOOC-COOH (щавелевая кислота)

2) В нейтральной или щелочной среде: 3CH≡CH +8KMnO4 H2O→ 3KOOC-COOK оксалат калия +8MnO2↓+ 2KOH+ 2H2O

Арены (бензол и его гомологи)

При окисления аренов в кислой среде следует ожидать образования кислот, а в щелочной – солей. Гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по α -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

5C6H5–CH3 + 6KMnO4 + 9H2SO4 = 5C6H5COOH + 6MnSO4 + 3K2SO4 + 14H2O,

5C6H5–C2H5 + 12KMnO4 + 18H2SO4 = 5C6H5COOH + 5CO2 + 12MnSO4 + 6K2SO4 + 28H2O,

C6H5–CH3 + 2KMnO4 = C6H5COOK + 2MnO2 + KOH + H2O.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

1) В кислой среде: С6H5-CH2-R KMnO4, H2SO4→ С6H5-COOH бензойная кислота+ CO2

2) В нейтральной или щелочной среде: С6H5-CH2-R KMnO4, H2O/(OH)→ С6H5-COOK + CO2

3) Окисление гомологов бензола перманганатом калия или бихроматом калия при нагревании: С6H5-CH2-R KMnO4, H2SO4, t˚C→ С6H5-COOHбензойная кислота+ R-COOH

4) Окисление кумола кислородом в присутствии катализатора (кумольный способ получения фенола): C6H5CH(CH3)2 O2, H2SO4→ C6H5-OH фенол + CH3-CO-CH3 ацетон

5C6H5CH(CH3)2 + 18KMnO4 + 27H2SO4 → 5C6H5COOH + 42H2O + 18MnSO4 + 10CO2 + K2SO4

Следует обратить внимание на то, что при мягком окислении стирола перманганатом калия КMnO4 в нейтральной или слабощелочной среде происходит разрыв π -связи,образуется гликоль (двухатомный спирт). В результате реакции окрашенный раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV). Окисление же сильным окислителем – перманганатом калия в кислой среде – приводит к полному разрыву двойной связи и образованию углекислого газа и бензойной кислоты, раствор при этом обесцвечивается.

C6H5−CH═CH2 + 2 KMnO4 + 3 H2SO4 → C6H5−COOH + CO2 + K2SO4 + 2 MnSO4 +4 H2O

Спирты

Следует помнить, что:

1) первичные спирты окисляются до альдегидов: 3CH3–CH2OH + K2Cr2O7 + 4H2SO4 = 3CH3–CHO + K2SO4 + Cr2(SO4)3 + 7H2O;

2) вторичные спирты окисляются до кетонов:

3) для третичных спиртов реакция окисления не характерна. Третичные спирты, в молекулах которых нет атома водорода при атоме углерода, содержащем группу ОН, в обычных условиях не окисляются. В жестких условиях (при действии сильных окислителей и при высоких температурах) они могут быть окислены до смеси низкомолекулярных карбоновых кислот, т.е. происходит деструкция углеродного скелета. При окислении метанола подкисленным раствором перманганата калия или дихромата калия образуется CO2. Первичные спирты при окислении в зависимости от условий протекания реакции могут образовать не только альдегиды, но и кислоты. Например, окисление этанола дихроматом калия на холоду заканчивается oбразованием уксусной кислоты, а при нагревании – ацетальдегида:

3CH3–CH2OH + 2K2Cr2O7 + 8H2SO4 = 3CH3–COOH + 2K2SO4 + 2Cr2(SO4)3 + 11H2O,

3CH3–CH2OH + K2Cr2O7 + 4H2SO4

3CH3–CHO + K2SO4 + Cr2(SO4)3 + 7H2O

Помним о влиянии среды на продукты реакций окисления спиртов, а именно: горячий нейтральный раствор KMnO4 окисляет метанол до карбоната калия, а остальные спирты – до солей соответствующих карбоновых кислот:

Окисление гликолей

1,2-Гликоли легко расщепляются в мягких условиях при действии иодной кислоты. В зависимости от строения исходного гликоля продуктами окисления могут быть альдегиды или кетоны:

Если три или более ОН-групп связаны с соседними атомами углерода, то при окислении иодной кислотой средний или средние атомы превращаются в муравьиную кислоту

Окисление гликолей перманганатом калия в кислой среде проходит аналогично окислительному расщеплению алкенов и также приводит к образованию кислот или кетонов в зависимости от строения исходного гликоля.

Альдегиды и кетоны

Альдегиды легче, чем спирты, окисляются в соответствующие карбоновые кислоты не только под действием сильных окислителей (кислород воздуха, подкисленные растворы KMnO4 и K2Cr2O7), но и под действием слабых (аммиачный раствор оксида серебра или гидроксида меди(II)):

5CH3–CHO + 2KMnO4 + 3H2SO4 = 5CH3–COOH + 2MnSO4 + K2SO4 + 3H2O,

3CH3–CHO + K2Cr2O7 + 4H2SO4 = 3CH3–COOH + Cr2(SO4)3 + K2SO4 + 4H2O,

CH3–CHO + 2OH CH3–COONH4 + 2Ag + 3NH3 + H2O

Особое внимание!!! Окисление метаналя аммиачным раствором оксида серебра приводит к образованию карбоната аммония, а не муравьиной кислоты: HCHО + 4OH = (NH4)2CO3 + 4Ag + 6NH3 + 2H2O.